People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eslava, Salvador
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Activating 2D MoS2 by loading 2D Cu–S nanoplatelets for improved visible light photocatalytic hydrogen evolution, drug degradation, and CO2 reductioncitations
- 2024Ca‐doped PrFeO<sub>3</sub> photocathodes with enhanced photoelectrochemical activitycitations
- 2021Structural Evolution of Iron Forming Iron Oxide in a Deep Eutectic-Solvothermal Reactioncitations
- 2021Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2020Silver-Decorated TiO2 Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolutioncitations
- 2020Strategies for the deposition of LaFeO3 photocathodescitations
- 2019Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in watercitations
- 2019Enhanced Ceria Nanoflakes using Graphene Oxide as a Sacrificial Template for CO Oxidation and Dry Reforming of Methanecitations
- 2019Inexpensive Metal Free Encapsulation Layers Enable Halide Perovskite Based Photoanodes for Water Splitting
- 2019Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methanecitations
- 2019Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methanecitations
- 2019Strategies for the deposition of LaFeO3 photocathodes:improving the photocurrent with a polymer templatecitations
- 2018Screen printed carbon CsPbBr3 solar cells with high open-circuit photovoltagecitations
- 2018Enhanced Ceria Nanoflakes using Graphene Oxide as a Sacrificial Template for CO Oxidation and Dry Reforming of Methanecitations
- 2018Efficient hematite photoanodes prepared by hydrochloric acid-treated solutions with amphiphilic graft copolymercitations
- 2017A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxidecitations
- 2016Autonomous self-healing structural composites with bio-inspired designcitations
- 2015Printing in Three Dimensions with Graphenecitations
- 2013Metal-organic framework ZIF-8 films as low-κ dielectrics in microelectronicscitations
- 2008Reaction of trimethylchlorosilane in spin-on Silicalite-1 zeolite filmcitations
- 2008Nanoporous organosilicate films prepared in acidic conditions using tetraalkylammonium bromide porogenscitations
- 2007Characterization of a molecular sieve coating using ellipsometric porosimetrycitations
- 2007Profile control of novel non-Si gates using B Cl3 N2 plasmacitations
Places of action
Organizations | Location | People |
---|
article
Reaction of trimethylchlorosilane in spin-on Silicalite-1 zeolite film
Abstract
We present a study on the hydrophobization of spin-on Silicalite-1 zeolite films through silylation with trimethylchlorosilane. Microporous and micro-mesoporous Silicalite-1 films were synthesized by spin coating of suspensions of Silicalite-1 nanozeolite crystallized for different times. Ellipsometric porosimetry with toluene and water adsorbates reveals that silylation decreases the porosity and makes the films hydrophobic. The decrease in porosity depends on the exposed surface area in the pores. Water contact angle measurements confirm the hydrophobicity. Fourier transform infrared spectroscopy reveals that the trimethylsilyl groups are chemisorbed selectively on isolated silanols and less on geminal and vicinal silanols due to steric limitations. Time-of-flight secondary-ion mass spectroscopy and in situ ellipsometry analysis of the reaction kinetics show that the silylation is a bulk process occurring in the absence of diffusion limitation. Electrical current leakage on films decreases upon silylation. Silylation with trimethylchlorosilane is shown to be an effective hydrophobization method for spin-on Silicalite-1 zeolite films. ; status: published