People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Buck, Manfred
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Coordination-controlled electrodeposition of palladium/copper thin films onto a pyridine-terminated self-assembled monolayer
- 2021Porous Honeycomb Self-Assembled Monolayerscitations
- 2021Porous honeycomb self-assembled monolayers:tripodal adsorption and hidden chirality of carboxylate anchored triptycenes on Agcitations
- 2021Porous honeycomb self-assembled monolayers : tripodal adsorption and hidden chirality of carboxylate anchored triptycenes on Agcitations
- 2020Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayercitations
- 2019Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayercitations
- 2012Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxycitations
- 2011Electrodeposition of Palladium onto a Pyridine-Terminated Self-Assembled Monolayercitations
- 2010Organic Mono layers, Networks, Electrochemistry: A Toolbox for the Nanoscale
- 2009Self-Assembly of a Pyridine-Terminated Thiol Monolayer on Au(111)citations
- 2008On the role of extrinsic and intrinsic defects in the underpotential deposition of Cu on thiol-modified Au(111) electrodescitations
- 2007Influence of molecular structure on phase transitions: A study of self-assembled monolayers of 2-(aryl)-ethane thiolscitations
- 2005Replicative generation of metal microstructures by template-directed electrometallizationcitations
- 2003Pronounced Odd-Even Changes in the Molecular Arrangement and Packing Density of Biphenyl-Based Thiol SAMs: A Combined STM and LEED Studycitations
- 2002Optical properties of a light-emitting polymer directly patterned by soft lithographycitations
- 2000Solvation of oligo(ethylene glycol)-terminated self-assembled monolayers studied by vibrational sum frequency spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Electrodeposition of Palladium onto a Pyridine-Terminated Self-Assembled Monolayer
Abstract
The electrodeposition of Pd onto self-assembled monolayers (SAMs) of 3-(4-pyridine-4-yl-phenyl)-propane-1-thiol on Au(111) has been investigated by scanning tunneling microscopy. Two schemes are compared, one involving an established two step procedure where Pd 2+ ions are first coordinated to the pyridine moieties and subsequently reduced in Pd 2+ -free electrolyte. The second deposition routine involves electroreduction in an electrolyte containing low concentration of Pd 2+ which merges both steps and, thus, significantly simplifies metal deposition onto pyridine-terminated SAMs. Both strategies produce identical Pd nanoparticles (NPs) which exhibit a narrow size distribution and an apparent STM height of 2.4 nm. The observation of a Coulomb blockade and easy displacement of the nanoparticles in STM experiments evidence deposition on top of the SAM. The NPs are concluded to be essentially spherical. Growth of the NPs is found to be self-limiting since repeating the complexation-deposition cycle increases the density of the nanoparticles rather than their size but only close to monolayer coverage. At high concentration of thePd 2+ electrolyte, deposition on top of the SAM is impeded by a competitive mushroom-type growth.