Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bladt, Eva

  • Google
  • 17
  • 85
  • 3044

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Diphenyl ditelluride assisted synthesis of noble metal-based silver-telluride 2D organometallic nanofibers with enhanced aggregation-induced emission (AIE) after oleylamine treatmentcitations
  • 2023State of the Art and Prospects for Halide Perovskite Nanocrystals.citations
  • 2022Element specific atom counting at the atomic scale by combining high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy13citations
  • 2021State of the art and prospects for halide perovskite nanocrystals1072citations
  • 2021State of the art and prospects for halide perovskite nanocrystals1072citations
  • 2020Nanocrystals of Lead Chalcohalides:A Series of Kinetically Trapped Metastable Nanostructures49citations
  • 2020Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects88citations
  • 2020Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals29citations
  • 2020Nanocrystals of Lead Chalcohalides49citations
  • 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals77citations
  • 2018Chemical Cutting of Perovskite Nanowires into Single‐Photon Emissive Low‐Aspect‐Ratio CsPbX3 (X=Cl, Br, I) Nanorods84citations
  • 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals109citations
  • 2018Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystalscitations
  • 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystalscitations
  • 2018Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS 2 nanocrystals109citations
  • 2017From Precursor Powders to CsPbX3 Perovskite Nanowires: One‐Pot Synthesis, Growth Mechanism, and Oriented Self‐Assembly269citations
  • 2017Von Vorläuferpulvern zu CsPbX3‐Perowskit‐Nanodrähten: Eintopfreaktion, Wachstumsmechanismus und gerichtete Selbstassemblierung24citations

Places of action

Chart of shared publication
Fernandez-Loderio, Javier
1 / 1 shared
Fernandez-Loderio, Adrian
1 / 1 shared
Rodriguez-Gonz, Benito
1 / 1 shared
Savvidou, Aikaterini Flessa
1 / 1 shared
Duarte, Frederico
1 / 2 shared
Djafari, Jamila
1 / 3 shared
Santos, Alcindo Aparecido Dos
1 / 1 shared
Capelo-Martinez, Jose Luis
1 / 1 shared
Lodeiro, Carlos
1 / 25 shared
Santos, Hugo
1 / 2 shared
Bals, Sara
16 / 93 shared
Balicas, Luis
1 / 3 shared
Ye, Junzhi
3 / 18 shared
Kovalenko, Maksym V.
3 / 195 shared
Dey, Amrita
4 / 5 shared
Polavarapu, Lakshminarayana
7 / 26 shared
Yin, Jun
3 / 14 shared
Wang, Ziyu
3 / 3 shared
De, Apurba
3 / 4 shared
Ha, Seung Kyun
3 / 3 shared
Feldmann, Jochen
6 / 14 shared
Manna, Liberato
5 / 61 shared
Debroye, Elke
3 / 20 shared
Wang, Yue
3 / 15 shared
Kshirsagar, Anuraj S.
3 / 4 shared
Debnath, Tushar
3 / 7 shared
Bodnarchuk, Maryna I.
3 / 64 shared
Zhang, Zezhong
1 / 4 shared
Van Den Bos, Karel Hendrik Wouter
1 / 3 shared
De Backer, Annick
1 / 5 shared
Van Aert, Sandra
1 / 18 shared
Sanchez-Iglesias, Ana
1 / 2 shared
Liz-Marzan, Luis M.
1 / 5 shared
Nellist, Peter D.
1 / 2 shared
Prato, Mirko
2 / 45 shared
Martín-García, Beatriz
2 / 11 shared
Giannini, Cinzia
2 / 18 shared
Mugnaioli, Enrico
2 / 23 shared
Toso, Stefano
2 / 10 shared
Zito, Juliette
2 / 14 shared
Akkerman, Quinten A.
3 / 10 shared
Spirito, Davide
2 / 23 shared
Moliterni, Anna
2 / 5 shared
Infante, Ivan
3 / 39 shared
Dang, Zhiya
3 / 16 shared
Ramade, Julien
2 / 10 shared
Buha, Joka
2 / 7 shared
Lobato, Ivan
2 / 2 shared
Gemmi, Mauro
2 / 29 shared
Huang, He
2 / 6 shared
Tong, Yu
4 / 10 shared
Richter, Alexander F.
2 / 4 shared
Döblinger, Markus
1 / 6 shared
Paul, Sharmistha
1 / 2 shared
Koczkur, Kallum M.
1 / 1 shared
Ashberry, Hannah M.
1 / 2 shared
Burkhart, Joseph A. C.
1 / 1 shared
Winckelmans, Naomi
1 / 2 shared
Smith, Joshua D.
1 / 2 shared
Skrabalak, Sara
1 / 2 shared
Abdelhady, Ahmed L.
1 / 8 shared
Petralanda, Urko
1 / 8 shared
Sartori, Emanuela
1 / 2 shared
Baranov, Dmitry
1 / 23 shared
Fu, Ming
1 / 4 shared
Tamarat, Philippe
1 / 6 shared
Lounis, Brahim
1 / 9 shared
Müllerbuschbaum, Peter
3 / 33 shared
Wang, Kun
3 / 16 shared
Mello-Donega, C. De
1 / 1 shared
Berends, Anne
1 / 4 shared
Hofmann, Jan Philipp
2 / 10 shared
Meeldijk, J. D.
2 / 5 shared
Stam, W. Van Der
1 / 1 shared
Berends, A. C.
1 / 3 shared
De Mello-Donega, C.
1 / 1 shared
Meeldijk, Johannes D.
2 / 2 shared
Mello Donega, Celso De
1 / 2 shared
Berends, Anne C.
2 / 4 shared
Hofmann, Jp Jan Philipp
1 / 8 shared
Stam, Ward Van Der
1 / 11 shared
Hofmann, Jan P.
1 / 16 shared
De Mello Donega, Celso
1 / 1 shared
Urban, Alexander S.
2 / 8 shared
Bohn, Bernhard J.
2 / 3 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Fernandez-Loderio, Javier
  • Fernandez-Loderio, Adrian
  • Rodriguez-Gonz, Benito
  • Savvidou, Aikaterini Flessa
  • Duarte, Frederico
  • Djafari, Jamila
  • Santos, Alcindo Aparecido Dos
  • Capelo-Martinez, Jose Luis
  • Lodeiro, Carlos
  • Santos, Hugo
  • Bals, Sara
  • Balicas, Luis
  • Ye, Junzhi
  • Kovalenko, Maksym V.
  • Dey, Amrita
  • Polavarapu, Lakshminarayana
  • Yin, Jun
  • Wang, Ziyu
  • De, Apurba
  • Ha, Seung Kyun
  • Feldmann, Jochen
  • Manna, Liberato
  • Debroye, Elke
  • Wang, Yue
  • Kshirsagar, Anuraj S.
  • Debnath, Tushar
  • Bodnarchuk, Maryna I.
  • Zhang, Zezhong
  • Van Den Bos, Karel Hendrik Wouter
  • De Backer, Annick
  • Van Aert, Sandra
  • Sanchez-Iglesias, Ana
  • Liz-Marzan, Luis M.
  • Nellist, Peter D.
  • Prato, Mirko
  • Martín-García, Beatriz
  • Giannini, Cinzia
  • Mugnaioli, Enrico
  • Toso, Stefano
  • Zito, Juliette
  • Akkerman, Quinten A.
  • Spirito, Davide
  • Moliterni, Anna
  • Infante, Ivan
  • Dang, Zhiya
  • Ramade, Julien
  • Buha, Joka
  • Lobato, Ivan
  • Gemmi, Mauro
  • Huang, He
  • Tong, Yu
  • Richter, Alexander F.
  • Döblinger, Markus
  • Paul, Sharmistha
  • Koczkur, Kallum M.
  • Ashberry, Hannah M.
  • Burkhart, Joseph A. C.
  • Winckelmans, Naomi
  • Smith, Joshua D.
  • Skrabalak, Sara
  • Abdelhady, Ahmed L.
  • Petralanda, Urko
  • Sartori, Emanuela
  • Baranov, Dmitry
  • Fu, Ming
  • Tamarat, Philippe
  • Lounis, Brahim
  • Müllerbuschbaum, Peter
  • Wang, Kun
  • Mello-Donega, C. De
  • Berends, Anne
  • Hofmann, Jan Philipp
  • Meeldijk, J. D.
  • Stam, W. Van Der
  • Berends, A. C.
  • De Mello-Donega, C.
  • Meeldijk, Johannes D.
  • Mello Donega, Celso De
  • Berends, Anne C.
  • Hofmann, Jp Jan Philipp
  • Stam, Ward Van Der
  • Hofmann, Jan P.
  • De Mello Donega, Celso
  • Urban, Alexander S.
  • Bohn, Bernhard J.
OrganizationsLocationPeople

article

Nanocrystals of Lead Chalcohalides

  • Prato, Mirko
  • Martín-García, Beatriz
  • Giannini, Cinzia
  • Mugnaioli, Enrico
  • Toso, Stefano
  • Zito, Juliette
  • Akkerman, Quinten A.
  • Manna, Liberato
  • Spirito, Davide
  • Moliterni, Anna
  • Infante, Ivan
  • Dang, Zhiya
  • Ramade, Julien
  • Buha, Joka
  • Bals, Sara
  • Lobato, Ivan
  • Gemmi, Mauro
  • Bladt, Eva
Abstract

<p>We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to ∼30 nm), an indirect bandgap, photoconductivity (responsivity = 4 ± 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.</p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • phase
  • theory
  • electron diffraction
  • tomography
  • density functional theory
  • phase diagram
  • surfactant
  • photoconductivity