People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lewiński, Janusz
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Unprecedented Richness of Temperature‐ and Pressure‐Induced Polymorphism in 1D Lead Iodide Perovskitecitations
- 2024High‐Performance Perovskite Solar Cells with Zwitterion‐Capped‐ZnO Quantum Dots as Electron Transport Layer and <scp>NH<sub>4</sub></scp>X (X = F, Cl, Br) Assisted Interfacial Engineeringcitations
- 2023A modular design approach to polymer-coated ZnO nanocrystals
- 2021From Uncommon Ethylzinc Complexes Supported by Ureate Ligands to Water-Soluble ZnO Nanocrystals: A Mechanochemical Approachcitations
- 2021Towards deeper understanding of multifaceted chemistry of magnesium alkylperoxidescitations
- 2021ZnO Nanoplatelets with Controlled Thickness: Atomic Insight into Facet‐Specific Bimodal Ligand Binding Using DNP NMRcitations
- 2020Interpretation of Resistance, Capacitance, Defect Density, and Activation Energy Levels in Single-Crystalline MAPbI3citations
- 2016Alkylzinc diorganophosphates: synthesis, structural diversity and unique ability to incorporate zincoxane unitscitations
- 2014A New Look at the Reactivity of TEMPO towards Diethylzinccitations
- 2014A solvothermal and mechanochemical strategy for the construction of chiral N,N-ditopic metalloligands: Oxygenation process of a Cu(I)X/Quinine systemcitations
- 2012Synthesis, Structure and Unique Reactivity of the Ethylzinc Derivative of a Bicyclic Guanidinecitations
Places of action
Organizations | Location | People |
---|
article
From Uncommon Ethylzinc Complexes Supported by Ureate Ligands to Water-Soluble ZnO Nanocrystals: A Mechanochemical Approach
Abstract
Urea and its derivatives, due to their unusual versatility of coordination modes to metal centers and the presence of multiple hydrogen-bond donor sites, are widely utilized as neutral or monoanionic ligands in coordination and bioinorganic chemistry and as building units of bioinspired materials. However, metal complexes with ureate ligands have essentially not been applied as precursors of hybrid organic–inorganic nanomaterials. We report on the synthesis and structure characterization of two novel organozinc ureate complexes incorporating N-phenylureate or N,N′-dicyclohexylureate ligands, the latter being the first reported complex with the μ3-μ2(O):κ1(N) ureate coordination mode. These findings not only expand the horizon of urea–zinc chemistry but also pave the way for efficient bottom-up mechanochemical synthesis of sub-10 nm diameter zinc oxide nanocrystals (ZnO NCs) coated by the ureate ligands. We explored the NC formation triggered by mechanical force from both a well-defined monocrystalline precursor and an insoluble hard-to-process amorphous organozinc precursor. Moreover, the organic shell of the N-phenylureate-coated ZnO NCs was modified via a facile, fast, and solventless host–guest complexation with β-cyclodextrin using a mechanochemical approach, which afforded water-soluble ZnO NCs. The reported procedure is the first example of rapid and sustainable mechanochemical synthesis of hybrid nanomaterials from organometallic precursors.