People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saari, Jesse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Ti3+ Self-Doping-Mediated Optimization of TiO2 Photocatalyst Coating Grown by Atomic Layer Depositioncitations
- 2023Is Carrier Mobility a Limiting Factor for Charge Transfer in Tio2/Si Devices? A Study by Transient Reflectance Spectroscopycitations
- 2022Insights into Tailoring of Atomic Layer Deposition Grown TiO2 as Photoelectrode Coating
- 2022Low-Temperature Route to Direct Amorphous to Rutile Crystallization of TiO2Thin Films Grown by Atomic Layer Depositioncitations
- 2022Tunable Ti3+-Mediated Charge Carrier Dynamics of Atomic Layer Deposition-Grown Amorphous TiO2citations
- 2021Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Siliconcitations
- 2020Optimization of photogenerated charge carrier lifetimes in ald grown tio2 for photonic applicationscitations
- 2019Defect engineering of atomic layer deposited TiO2 for photocatalytic applications
- 2019Diversity of TiO2: Controlling the molecular and electronic structure of atomic layer deposited black TiO2citations
- 2018Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
- 2018Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2018Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defectscitations
- 2017Role of Oxide Defects in ALD grown TiO2 Coatings on Performance as Photoanode Protection Layer
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2017Tailored Fabrication of Transferable and Hollow Weblike Titanium Dioxide Structurescitations
- 2016Fabrication of topographically microstructured titanium silicide interface for advanced photonic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Interface Engineering of TiO2 Photoelectrode Coatings Grown by Atomic Layer Deposition on Silicon
Abstract
Titanium dioxide (TiO2) can protect photoelectrochemical (PEC) devices from corrosion, but the fabrication of high-quality TiO2 coatings providing long-term stability has remained challenging. Here, we compare the influence of Si wafer cleaning and postdeposition annealing temperature on the performance of TiO2/n+-Si photoanodes grown by atomic layer deposition (ALD) using tetrakis(dimethylamido)titanium (TDMAT) and H2O as precursors at a growth temperature of 100 °C. We show that removal of native Si oxide before ALD does not improve the TiO2 coating performance under alkaline PEC water splitting conditions if excessive postdeposition annealing is needed to induce crystallization. The as-deposited TiO2 coatings were amorphous and subject to photocorrosion. However, the TiO2 coatings were found to be stable over a time period of 10 h after heat treatment at 400 °C that induced crystallization of amorphous TiO2 into anatase TiO2. No interfacial Si oxide formed during the ALD growth, but during the heat treatment, the thickness of interfacial Si oxide increased to 1.8 nm for all of the samples. Increasing the ALD growth temperature to 150 °C enabled crystallization at 300 °C, which resulted in reduced growth of interfacial Si oxide followed by a 70 mV improvement in the photocurrent onset potential. ; Peer reviewed