People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schulze, Morgan W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Thermal processing of diblock copolymer melts mimics metallurgycitations
- 2017Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane-Methyl Methacrylate Block Co-Oligomerscitations
- 2015Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separationcitations
- 2015Poly(cyclohexylethylene)-block-poly(ethylene oxide) Block Polymers for Metal Oxide Templatingcitations
- 2014High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separationcitations
Places of action
Organizations | Location | People |
---|
article
Poly(cyclohexylethylene)-block-poly(ethylene oxide) Block Polymers for Metal Oxide Templating
Abstract
<p>A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order-disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. Herein, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.</p>