Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brennan, Michael C.

  • Google
  • 2
  • 12
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Optically Transparent Lead Halide Perovskite Ceramicscitations
  • 2020Superlattices are greener on the other side61citations

Places of action

Chart of shared publication
Mccleese, Christopher L.
1 / 1 shared
Stevenson, Peter R.
1 / 1 shared
Carter, Michael J.
1 / 1 shared
Lipp, Jeremiah
1 / 1 shared
Grusenmeyer, Tod A.
1 / 1 shared
Manna, Liberato
1 / 61 shared
Zhukovskyi, Maksym
1 / 1 shared
Kuno, Masaru
1 / 2 shared
Toso, Stefano
1 / 10 shared
Baranov, Dmitry
1 / 23 shared
Pavlovetc, Ilia M.
1 / 1 shared
Marras, Sergio
1 / 15 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Mccleese, Christopher L.
  • Stevenson, Peter R.
  • Carter, Michael J.
  • Lipp, Jeremiah
  • Grusenmeyer, Tod A.
  • Manna, Liberato
  • Zhukovskyi, Maksym
  • Kuno, Masaru
  • Toso, Stefano
  • Baranov, Dmitry
  • Pavlovetc, Ilia M.
  • Marras, Sergio
OrganizationsLocationPeople

article

Superlattices are greener on the other side

  • Manna, Liberato
  • Brennan, Michael C.
  • Zhukovskyi, Maksym
  • Kuno, Masaru
  • Toso, Stefano
  • Baranov, Dmitry
  • Pavlovetc, Ilia M.
  • Marras, Sergio
Abstract

<p>Perovskite nanocrystal superlattices (NC SLs) are the nearest real-world approximations to monodisperse NC ensembles. NC SLs thus represent ideal model systems for evaluating the optical and structural stability of CsPb(I<sub>1</sub>−<sub>x</sub>Br<sub>x</sub>)<sub>3</sub> NCs at a macroscopic level. Here, photoinduced changes to CsPb(I<sub>1</sub>−<sub>x</sub>Br<sub>x</sub>)<sub>3</sub> NC SLs (0 &lt; x &lt; 1.0) are probed via in situ photoluminescence, X-ray diffraction, and electron microscopy. We find that prolonged (∼10−20 h) ultraviolet−visible irradiation causes irreversible PL blueshifts, photobrightening, and crystal structure contractions. These changes stem from gradual photoinduced I<sub>2</sub> sublimation, which transforms CsPb(I<sub>1</sub>−<sub>x</sub>Br<sub>x</sub>)<sub>3</sub> into CsPbBr<sub>3</sub>. Despite eliminating half of the initial halides from individual CsPb(I<sub>0.53</sub>Br<sub>0.47</sub>)<sub>3</sub> particles, NCs within SLs remarkably preserve their initial crystallinity, cuboidal shapes, edge lengths, and size distributions. This work illustrates compositional control toward generating precisely engineered perovskite NC SLs. It also highlights iodide photo-oxidation as a hurdle that must be overcome if mixed halide perovskite nanomaterials are to be applied beyond fundamental studies.</p>

Topics
  • perovskite
  • photoluminescence
  • x-ray diffraction
  • electron microscopy
  • crystallinity
  • static light scattering