People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cataldi, Pietro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Hazard Assessment of Abraded Thermoplastic Composites Reinforced with Reduced Graphene Oxidecitations
- 20223D cellulose fiber networks modified by PEDOT:PSS/graphene nanoplatelets for thermoelectric applicationscitations
- 2021Zinc Polyaleuritate Ionomer Coatings as a Sustainable, Alternative Technology for Bisphenol A-Free Metal Packagingcitations
- 2020Plant-Inspired Polyaleuritate–Nanocellulose Composite Photonic Filmscitations
- 2020Green Biocomposites for Thermoelectric Wearable Applicationscitations
- 2020Sustainable, high barrier polyaleuritate/nanocellulose biocompositescitations
- 2020Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applicationscitations
- 2019Green Biocomposites for Thermoelectric Wearable Applicationscitations
- 2019Keratin-Graphene Nanocomposite: Transformation of Waste Wool in Electronic Devicescitations
- 2018Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrodecitations
- 2018Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applicationscitations
- 2016Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymerscitations
- 2016Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymerscitations
Places of action
Organizations | Location | People |
---|
article
Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications
Abstract
Biobased and/or biodegradable plastics have been proposed as a sustainable alternative to long-lasting and fossil fuel-derived ones. Among those available, polyhydroxyalkanoate (PHA) shows great potential across a large variety of applications, but it is not used extensively because of its relatively poor physical properties. An expansion of its uses can be accomplished by developing nanocomposites where PHAs are utilized as the polymer matrix. Herein, a PHA biopolyester was melt-blended with graphene nanoplatelets (GNPs) or with a hybrid mixture of GNPs and carbon nanofibers. The resulting nanocomposites exhibited enhanced thermal stability and satisfactory mechanical properties. The hybrid nanocomposites percolated electrically at lower nanofiller loadings compared to the GNP–PHA system. The electrical conductivity at 15 wt % loading was ∼6 times higher than that of the GNP-based nanocomposite. As a result, the electromagnetic interference shielding performance of the hybrid material was around 50% better than the pure GNP-reinforced nanocomposites. The thermal conductivity increased significantly for both types of bionanocomposites and reached values in the order of 5 W K–1 m–1, with the hybrid-based material displaying once again the best performance. Considering the solvent-free and industrially compatible production method utilized to manufacture these nanocomposites, the proposed multifunctional materials can expand the range of applications of PHAs and increase the environmental sustainability of the plastic and plastic electronics industry. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.0c00539. SEM high-magnification images, EMI shielding analysis, and details on the setup used to measure the thermal conductivity of the materials (PDF) This article has not yet been cited by other publications.