People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schiøtz, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire:Implications for Nanostructure Synthesiscitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017Nanocrystalline metals: Roughness in flatlandcitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Correlation between diffusion barriers and alloying energy in binary alloyscitations
- 2016Pt x Gd alloy formation on Pt(111): Preparation and structural characterizationcitations
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007An interatomic potential for studying CuZr bulk metallic glassescitations
- 2006Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glassescitations
- 2004Simulation of Cu-Mg metallic glass: Thermodynamics and structurecitations
- 2004Atomistic simulations of Mg-Cu metallic glasses: Mechanical propertiescitations
- 2004Simulations of intergranular fracture in nanocrystalline molybdenumcitations
- 2003A maximum in the strength of nanocrystalline copper
Places of action
Organizations | Location | People |
---|
article
Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire
Abstract
The galvanic replacement reaction(GRR) is a convenient method for synthesizing hollow/porous noble metal nanostructures with energy,health, and environmental applications. Understanding the reaction mechanism is important for optimizing the produced nanostructures’physicochemical properties. Using liquid-phase scanning transmission electron microscopy (LPSTEM), we quantitatively analyzed the GRR processin individual silver nanowires (AgNWs) reacting with an aqueous HAuCl<sub>4</sub> solution. The experiments and atomic-scale simulations show that GRR is a highly selective process with respect to the exposed surface facets, and we discover that the process progression is influenced by the internal crystal domains. We observe that the etching of AgNWs starts preferentially from facets with high energy sites while not favorable on low energy {111} facets, where even the internal twin facets within the nanostructures are found to be temporarily stable. The LPSTEM-observed etch rates in single or multiple crystal segmentsin AgNWs are shown to approach diffusion-limited conditions. These results provide intricate and detailed insights into the GRR process, which are difficult to achieve by other methods, and such studies will be beneficial for the understanding of how the surface energy and number of available surface sites influence the initiation probability, which will theoretically guide the synthesis of nanostructures, also supported with the deeper understanding of how the internal structure may influence the process.