People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Strain, Michael
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systemscitations
- 2020Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glasscitations
- 2020Automated nanoscale absolute accuracy alignment system for transfer printingcitations
- 2019Hyperspectral imaging under low illumination with a single photon cameracitations
- 2019Gallium nitride micro-LED drive circuits for visible light communications
- 2014Integrated microspectrometer with elliptical Bragg mirror enhanced diffraction grating on silicon on insulatorcitations
- 2012Bistable micro-ring lasers with compact footprint and high output efficiencycitations
- 2012Photo-induced trimming of chalcogenide-assisted silicon photonic circuits
- 2007Integrated chirped Bragg gratings for dispersion control
Places of action
Organizations | Location | People |
---|
article
Automated nanoscale absolute accuracy alignment system for transfer printing
Abstract
<p>The heterogeneous integration of micro- and nanoscale devices with on-chip circuits and waveguide platforms is a key enabling technology, with wide-ranging applications in areas including telecommunications, quantum information processing, and sensing. Pick and place integration with absolute positional accuracy at the nanoscale has been previously demonstrated for single proof-of-principle devices. However, to enable scaling of this technology for realization of multielement systems or high throughput manufacturing, the integration process must be compatible with automation while retaining nanoscale accuracy. In this work, an automated transfer printing process is realized by using a simple optical microscope, computer vision, and high accuracy translational stage system. Automatic alignment using a cross-correlation image processing method demonstrates absolute positional accuracy of transfer with an average offset of <40 nm (3σ < 390 nm) for serial device integration of both thin film silicon membranes and single nanowire devices. Parallel transfer of devices across a 2 × 2 mm<sup>2</sup> area is demonstrated with an average offset of <30 nm (3σ < 705 nm). Rotational accuracy better than 45 mrad is achieved for all device variants. Devices can be selected and placed with high accuracy on a target substrate, both from lithographically defined positions on their native substrate or from a randomly distributed population. These demonstrations pave the way for future scalable manufacturing of heterogeneously integrated chip systems.</p>