People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siuzdak, Katarzyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Temperature-controlled nanomosaics of AuCu bimetallic structure towards smart light managementcitations
- 2022The Anodization of Thin Titania Layers as a Facile Process towards Semitransparent and Ordered Electrode Materialcitations
- 2021Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: Enhancing carrier transfer mechanismcitations
- 2021Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability windowcitations
- 2021Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability windowcitations
- 2020Enhancing photocatalytic performance and solar absorption by schottky nanodiodes heterojunctions in mechanically resilient palladium coated TiO2/Si nanopillars by atomic layer depositioncitations
- 2020Enhancing photocatalytic performance and solar absorption by schottky nanodiodes heterojunctions in mechanically resilient palladium coated TiO2/Si nanopillars by atomic layer depositioncitations
- 2020The pulsed laser ablation synthesis of colloidal iron oxide nanoparticles for the enhancement of TiO<inf>2</inf> nanotubes photo-activitycitations
- 2020Spectacular Oxygen Evolution Reaction Enhancement through Laser Processing of the Nickel-Decorated Titania Nanotubescitations
- 2019Photoelectrochemically Active N-Adsorbing Ultrathin TiO <inf>2</inf> Layers for Water-Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environmentcitations
- 2018Titania nanotubes modified by a pyrolyzed metal-organic framework with zero valent iron centers as a photoanode with enhanced photoelectrochemical, photocatalytical activity and high capacitancecitations
- 2017Silicon/TiO<inf>2</inf> core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidationcitations
- 2017High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reactioncitations
Places of action
Organizations | Location | People |
---|
article
High Electrocatalytic Response of a Mechanically Enhanced NbC Nanocomposite Electrode Toward Hydrogen Evolution Reaction
Abstract
<p>Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency. Herein we report on a new approach to easily deposit and control the micro/nanostructure of thin-film electrodes based on niobium carbide (NbC) and their electrocatalytic response. We will show that, by improving the mechanical properties of the NbC electrodes, microstructure and mechanical resilience can be obtained while maintaining high electrocatalytic response. We also address the influence of other parameters such as conductivity and chemical composition on the overall performance of the thin-film electrodes. Finally, we show that nanocomposite NbC electrodes are promising candidates toward HER and, furthermore, that the methodology presented here is suitable to produce other transition-metal carbides with improved catalytic and mechanical properties.</p>