Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Smazna, D.

  • Google
  • 8
  • 44
  • 213

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2019Tailored crystalline width and wall thickness of an annealed 3D carbon foam composites and its mechanical property7citations
  • 2018Fundamentals of the temperature-dependent electrical conductivity of a 3D carbon foam—Aerographite20citations
  • 2017Enhancing the conductivity of ZnO micro- and nanowire networks with gallium oxide1citations
  • 2017Morphology dependent UV photoresponse of Sn-doped ZnO microstructures37citations
  • 2017Hybridization of zinc oxide tetrapods for selective gas sensing applications146citations
  • 2017Functional NiTi grids for in situ straining in the TEM2citations
  • 2016Electrical and thermal conductivity of aerogel/epoxy compositescitations
  • 2016Photocatalytic applications of doped zinc oxide porous films grown by magnetron sputteringcitations

Places of action

Chart of shared publication
Roth, S.
2 / 94 shared
Mishra, Prof. Yogendra Kumar
3 / 41 shared
Schulte, K.
3 / 29 shared
Adelung, R.
3 / 12 shared
Marx, J.
2 / 2 shared
Brouschkin, A.
2 / 2 shared
Fiedler, B.
3 / 16 shared
Wittich, H.
1 / 2 shared
Kienle, L.
2 / 22 shared
Wolff, N.
2 / 6 shared
Shree, S.
1 / 3 shared
Schütt, F.
1 / 2 shared
Hoppe, M.
2 / 7 shared
Viana, B.
1 / 2 shared
Lupan, O.
3 / 14 shared
Adelung, Rainer
5 / 120 shared
Gröttrup, J.
2 / 4 shared
Hayes, P.
1 / 5 shared
Pauporté, T.
1 / 5 shared
Röbisch, V.
1 / 1 shared
Postica, V.
2 / 10 shared
Aschehoug, P.
1 / 2 shared
Carreira, J. F. C.
1 / 3 shared
Tiginyanu, I.
2 / 6 shared
Leeuw, N. H. De
1 / 2 shared
Mishra, Y. K.
1 / 13 shared
Correia, M. R.
1 / 10 shared
Cretu, V.
1 / 6 shared
Monteiro, T.
1 / 19 shared
Mishra, A. K.
1 / 9 shared
Rodrigues, J.
1 / 8 shared
Sedrine, N. Ben
1 / 4 shared
Schürmann, U.
1 / 5 shared
Quandt, Eckhard
1 / 49 shared
Chluba, C.
1 / 2 shared
Junker, P.
1 / 3 shared
Miranda, R. Lima De
1 / 1 shared
Garlof, Svenja
1 / 4 shared
Mecklenburg, M.
1 / 3 shared
Ghimpu, L.
1 / 2 shared
Cojocaru, A.
1 / 1 shared
Benecke, W.
1 / 3 shared
Bejenari, A.
1 / 1 shared
Reimer, T.
1 / 4 shared
Chart of publication period
2019
2018
2017
2016

Co-Authors (by relevance)

  • Roth, S.
  • Mishra, Prof. Yogendra Kumar
  • Schulte, K.
  • Adelung, R.
  • Marx, J.
  • Brouschkin, A.
  • Fiedler, B.
  • Wittich, H.
  • Kienle, L.
  • Wolff, N.
  • Shree, S.
  • Schütt, F.
  • Hoppe, M.
  • Viana, B.
  • Lupan, O.
  • Adelung, Rainer
  • Gröttrup, J.
  • Hayes, P.
  • Pauporté, T.
  • Röbisch, V.
  • Postica, V.
  • Aschehoug, P.
  • Carreira, J. F. C.
  • Tiginyanu, I.
  • Leeuw, N. H. De
  • Mishra, Y. K.
  • Correia, M. R.
  • Cretu, V.
  • Monteiro, T.
  • Mishra, A. K.
  • Rodrigues, J.
  • Sedrine, N. Ben
  • Schürmann, U.
  • Quandt, Eckhard
  • Chluba, C.
  • Junker, P.
  • Miranda, R. Lima De
  • Garlof, Svenja
  • Mecklenburg, M.
  • Ghimpu, L.
  • Cojocaru, A.
  • Benecke, W.
  • Bejenari, A.
  • Reimer, T.
OrganizationsLocationPeople

article

Hybridization of zinc oxide tetrapods for selective gas sensing applications

  • Carreira, J. F. C.
  • Lupan, O.
  • Tiginyanu, I.
  • Gröttrup, J.
  • Smazna, D.
  • Leeuw, N. H. De
  • Mishra, Y. K.
  • Adelung, Rainer
  • Correia, M. R.
  • Cretu, V.
  • Monteiro, T.
  • Mishra, A. K.
  • Rodrigues, J.
  • Sedrine, N. Ben
  • Postica, V.
Abstract

<p>In this work, the exceptionally improved sensing capability of highly porous three-dimensional (3-D) hybrid ceramic networks toward reducing gases is demonstrated for the first time. The 3-D hybrid ceramic networks are based on doped metal oxides (MexOy and ZnxMe1-xOy, Me = Fe, Cu, Al) and alloyed zinc oxide tetrapods (ZnO-T) forming numerous junctions and heterojunctions. A change in morphology of the samples and formation of different complex microstructures is achieved by mixing the metallic (Fe, Cu, Al) microparticles with ZnO-T grown by the flame transport synthesis (FTS) in different weight ratios (ZnO-T:Me, e.g., 20:1) followed by subsequent thermal annealing in air. The gas sensing studies reveal the possibility to control and change/tune the selectivity of the materials, depending on the elemental content ratio and the type of added metal oxide in the 3-D ZnO-T hybrid networks. While pristine ZnO-T networks showed a good response to H2 gas, a change/tune in selectivity to ethanol vapor with a decrease in optimal operating temperature was observed in the networks hybridized with Fe-oxide and Cu-oxide. In the case of hybridization with ZnAl2O4, an improvement of H2 gas response (to ∼7.5) was reached at lower doping concentrations (20:1), whereas the increase in concentration of ZnAl2O4 (ZnO-T:Al, 10:1), the selectivity changes to methane CH<sub>4</sub> gas (response is about 28). Selectivity tuning to different gases is attributed to the catalytic properties of the metal oxides after hybridization, while the gas sensitivity improvement is mainly associated with additional modulation of the electrical resistance by the built-in potential barriers between n-n and n-p heterojunctions, during adsorption and desorption of gaseous species. Density functional theory based calculations provided the mechanistic insights into the interactions between different hybrid networks and gas molecules to support the experimentally observed results. The studied networked materials and sensor structures performances would provide particular advantages in the field of fundamental research, applied physics studies, and industrial and ecological applications.</p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • microstructure
  • theory
  • zinc
  • density functional theory
  • forming
  • annealing
  • ceramic