People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Santos, Hélder A.
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Electrochemical detection of atrial natriuretic peptide-coated nanocarriers based on a molecularly imprinted polymer receptor thin filmcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatmentcitations
- 2023Nanoparticles-based phototherapy systems for cancer treatment:Current status and clinical potentialcitations
- 2023Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applicationscitations
- 2023Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardiumcitations
- 2022Gelatin-Lysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant and Bioresorbability Properties for Myocardial Regeneration Applicationscitations
- 2021An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinningcitations
- 2021An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinningcitations
- 2021Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructurescitations
- 2021Intracellular delivery of budesonide and polydopamine co-loaded in endosomolytic poly(butyl methacrylate-co-methacrylic acid) grafted acetalated dextran for macrophage phenotype switch from M1 to M2citations
- 2021One-pot synthesis of pH-responsive Eudragit-mesoporous silica nanocomposites enable colonic delivery of glucocorticoids for the treatment of inflammatory bowel diseasecitations
- 2020Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applicationscitations
- 2020Preparation and In vivo Evaluation of Red Blood Cell Membrane Coated Porous Silicon Nanoparticles Implanted with 155Tbcitations
- 2020Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarctioncitations
- 2020Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructurescitations
- 2020Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug deliverycitations
- 20203D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cellscitations
- 2020Intracellular co-delivery of melanin-like nanoparticle and budesonide by endosomolytic polymeric materials for anti-inflammatory therapy
- 20203D Scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithographycitations
- 2018Properties and chemical modifications of lignincitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2018Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regenerationcitations
- 2017Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitationcitations
- 2017Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabricationcitations
- 2017A Multifunctional Nanocomplex for Enhanced Cell Uptake, Endosomal Escape and Improved Cancer Therapeutic Effectcitations
- 2017Development and Optimization of Methotrexate-Loaded Lipid-Polymer Hybrid Nanoparticles for Controlled Drug Delivery Applicationscitations
- 2017Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticlescitations
- 2016Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal modelcitations
- 2015Smart porous silicon nanoparticles with polymeric coatings for sequential combination therapycitations
- 2015Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cellscitations
- 2015Microfluidic Nanoprecipitation of a Stimuli Responsive Hybrid Nanocomposite for Antitumoral Applications
Places of action
Organizations | Location | People |
---|
article
Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardium
Abstract
Biopolymeric injectablehydrogels are promising biomaterialsformyocardial regeneration applications. Besides being biocompatible,they adjust themselves, perfectly fitting the surrounding tissue.However, due to their nature, biopolymeric hydrogels usually lackdesirable functionalities, such as antioxidant activity and electricalconductivity, and in some cases, mechanical performance. Protein nanofibrils(NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructureswith excellent mechanical performance and antioxidant activity, whichcan work as nanotemplates to produce metallic nanoparticles. Here,gold nanoparticles (AuNPs) were synthesized in situ in the presenceof LNFs, and the obtained hybrid AuNPs@LNFs were incorporated intogelatin-hyaluronic acid (HA) hydrogels for myocardial regenerationapplications. The resulting nanocomposite hydrogels showed improvedrheological properties, mechanical resilience, antioxidant activity,and electrical conductivity, especially for the hydrogels containingAuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogelsare favorably adjusted at lower pH levels, which correspond to theones in inflamed tissues. These improvements were observed while maintainingimportant properties, namely, injectability, biocompatibility, andthe ability to release a model drug. Additionally, the presence ofAuNPs allowed the hydrogels to be monitorable through computer tomography.This work demonstrates that LNFs and AuNPs@LNFs are excellent functionalnanostructures to formulate injectable biopolymeric nanocompositehydrogels for myocardial regeneration applications. ; Peer reviewed