People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ribas Gomes, Diego
Hamburg University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensorscitations
- 2023Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensorscitations
- 2019Bending of nanoporous thin films under ion radiationcitations
- 2015Formation of Nanoporous Gold Studied by Transmission Electron Backscatter Diffractioncitations
Places of action
Organizations | Location | People |
---|
article
Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensors
Abstract
Flexible piezocapacitive sensors utilizing nanomaterial-polymer composite based nanofibrous membranes offer an attractive alternative to more traditional piezoelectric and piezoresistive wearable sensors owing to their ultralow powered nature, fast response, low hysteresis, and insensitivity to temperature change. In this work we propose a facile method of fabricating electrospun graphene dispersed PVAc nanofibrous membrane based piezocapacitive sensors for applications in IoT enabled wearables and human physiological function monitoring. A series of electrical and material characterization experiments were conducted on both the pristine and graphene dispersed PVAc nanofibers to understand the effect of graphene addition on nanofiber morphology, dielectric response, and pressure sensing performance. Dynamic uniaxial pressure sensing performance evaluation tests were conducted on the pristine and graphene loaded PVAc nanofibrous membrane-based sensors for understanding the effect of two-dimensional (2D) nanofiller addition on pressure sensing performance. Almost twofold increase in dielectric constant and pressure sensing performance was observed for graphene loaded nanofiber sensors and subsequently, micro dipole formation model was invoked to explain the nanofiller induced dielectric constant enhancement. The robustness and reliability of the sensor has been underscored by conducting accelerated lifetime assessment experiments entailing at least 3000 cycles of periodic tactile force loading. A series of tests involving human physiological parameters monitoring were conducted to underscore the applicability of the proposed sensor for IoT enabled personalized health care, soft robotics, and next generation prosthetic devices. Finally, easy degradability of the sensing elements is demonstrated to emphasize their suitability for transient electronics applications.