People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gorgojo, Patricia
Universidad de Zaragoza
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Mixed matrix and thin-film nanocomposite membranes of PIM-1 and hydrolyzed PIM-1 with Ni- and Co-MOF-74 nanoparticles for CO 2 separation: Comparison of blending, grafting and crosslinking fabrication methodscitations
- 2024Mixed matrix and thin-film nanocomposite membranes of PIM-1 and hydrolyzed PIM-1 with Ni- and Co-MOF-74 nanoparticles for CO2 separation: Comparison of blending, grafting and crosslinking fabrication methodscitations
- 2024Spray coating of 2D materials in the production of antifouling membranes for membrane distillationcitations
- 2024High gas permeability in aged superglassy membranes with nanosized UiO-66−NH2/cPIM-1 network fillerscitations
- 2023Organic solvent-free fabrication of thin film polyamide/zeolitic imidazolate framework membranes for removal of dyes from watercitations
- 2023Organic solvent-free fabrication of thin film polyamide/zeolitic imidazolate framework membranes for removal of dyes from watercitations
- 2023CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1citations
- 2022Porous silica nanosheets in PIM-1 membranes for CO 2 separationcitations
- 2022Porous silica nanosheets in PIM-1 membranes for CO2 separationcitations
- 2022Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separationcitations
- 2022Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporationcitations
- 2022Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporationcitations
- 2021PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holescitations
- 2021POSS-Functionalized Graphene Oxide/PVDF Electrospun Membranes for Complete Arsenic Removal Using Membrane Distillationcitations
- 2020The use of carbon nanomaterials in membrane distillation membranes: a review
- 2020Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?citations
- 2020Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltrationcitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillationcitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporositycitations
- 2014Ultrathin polymer films with intrinsic microporosity: Anomalous solvent permeation and high flux membranescitations
- 2013High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltrationcitations
- 2010Exfoliated titanosilicate material UZAR-S1 obtained from JDF-L1citations
Places of action
Organizations | Location | People |
---|
article
PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes
Abstract
PIM-1/holey graphene oxide (GO) mixed matrix membranes (MMMs) have been prepared and their gas separation performance for CO2/CH4 mixtures assessed. Nanopores have been created in the basal plane of gas-impermeable GO by chemical etching reactions, and the resulting holey flakes have been further chemically functionalized, either with octadecylamine (ODA) or with PIM-1 moieties, to aid their dispersion in PIM-1. It is found that nanopores barely promote gas transport through the graphene-like nanofiller for fresh membranes (tested right after preparation); however, the prepared hybrid PIM-1/holey GO membranes exhibit higher CO2 permeability and CO2/CH4 selectivity than the pure polymer membrane 150 days after preparation and 13 and 15% higher CO2 permeability for filler contents of 0.1% of octadecylamine-functionalized holey GO and 1% of (PIM-1)-functionalized holey GO, respectively. The most significant improvement is observed for the mitigation of physical aging, as MMMs using 10% of (PIM-1)-functionalized holey GO nanofillers are capable of maintaining up to 70% of their initial CO2 permeability after 150 days, whereas only 53% is kept for pure PIM-1 after the same period. The gas permeability of the nanofiller has been rationalized with the aid of the Maxwell-Wagner-Sillars equation.