People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ghouri, Zafar Khan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER)citations
- 2022Incorporation of manganese carbonyl sulfide ((Mn2S2 (CO)7) and mixed metal oxides-decorated reduced graphene oxide (MnFeCoO4/rGO) as a selective anode toward efficient OER from seawater splitting under neutral pH conditionscitations
- 2021Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environmentscitations
- 2021Incorporation of Manganese Carbonyl Sulfide ((Mn2S2 (CO)7) and Mixed Metal Oxides-Decorated Reduced Graphene Oxide (MnFeCoO4/rGO) as a Selective Anode Toward Efficient OER from Seawater Splitting Under Neutral PH Conditions
- 2021Synthesis and experimental investigation of δ-MnO2/N-rGO nanocomposite for Li-O2 batteries applicationscitations
- 2021Theoretical and experimental investigations of Co-Cu bimetallic alloys-incorporated carbon nanowires as an efficient bi-functional electrocatalyst for water splittingcitations
- 2019Engineering of nickel based catalyst for direct urea fuel cell-energy from municipal liquid waste (Mlw)
- 2018Application of FTIR and LA-ICPMS spectroscopies as a possible approach for biochemical analyses of different rat brain regionscitations
- 2018Stable N-doped & FeNi-decorated graphene non-precious electrocatalyst for Oxygen Reduction Reaction in Acid Mediumcitations
- 2018Surfactant/organic solvent free single-step engineering of hybrid graphene-Pt/TiO2 nanostructure: Efficient photocatalytic system for the treatment of wastewater coming from textile industriescitations
- 2017Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from watercitations
- 2016Photoluminescent and transparent Nylon-6 nanofiber mat composited by CdSe@ZnS quantum dots and poly (methyl methacrylate)citations
- 2016Nano-designed λ-CaCO3@rGO photo-catalyst for effective adsorption and simultaneous removal of organic pollutantcitations
- 2016Nickel nanoparticles-decorated graphene as highly effective and stable electrocatalyst for urea electrooxidationcitations
- 2016Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenescitations
- 2016Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell applicationcitations
- 2015Synthesis and Electrochemical Properties of MnO 2 and Co-Decorated Graphene as Novel Nanocomposite for Electrochemical Super Capacitors Applicationcitations
- 2015Synthesis and characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitorscitations
- 2015Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fiberscitations
- 2014Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline mediumcitations
Places of action
Organizations | Location | People |
---|
article
Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environments
Abstract
Using abundant seawater can reduce reliance on freshwater resources for hydrogen production from electrocatalytic water splitting. However, seawater has detrimental effects on the stability and activity of the hydrogen evolution reaction (HER) electrocatalysts under different pH conditions. In this work, we report the synthesis of binary metallic core-sheath nitride@oxynitride electrocatalysts [Ni(ETM)]δ+-[O-N]δ-, where ETM is an early transition metal V or Cr. Using NiVN on a nickel foam (NF) substrate, we demonstrate an HER overpotential as low as 32 mV at -10 mA cm-2 in saline water (0.6 M NaCl). The results represent an advancement in saline water HER performance of earth-abundant electrocatalysts, especially under near-neutral pH range (i.e., pH 6-8). Doping ETMs in nickel oxynitrides accelerates the typically rate-determining H2O dissociation step for HER and suppresses chloride deactivation of the catalyst in neutral-pH saline water. Heterointerface synergism occurs through H2O adsorption and dissociation at interfacial oxide character, while adsorbed H∗ proceeds via Heyrovsky or Tafel step on the nitride character. This electrocatalyst showed stable performance under a constant current density of -50 mA cm-2 for 50 h followed by additional 50 h at -100 mA cm-2 in a neutral saline electrolyte (1 M PB + 0.6 M NaCl). Contrarily, under the same conditions, Pt/C@NF exhibited significantly low performance after a mere 4 h at -50 mA cm-2. The low Tafel slope of 25 mV dec-1 indicated that the reaction is Tafel limited, unlike commercial Pt/C, which is Heyrovsky limited. We close by discussing general principles concerning surface charge delocalization for the design of HER electrocatalysts in pH saline environments.