People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Andrew G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Toward Water-Resistant, Tunable Perovskite Absorbers Using Peptide Hydrogel Additives
- 2023Elucidating the mechanism of self healing in hydro gel lead halide perovskite composites for use in photovoltaic devices
- 2022Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopycitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineeringcitations
- 2021Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurementscitations
- 2021Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structurescitations
- 2020Functionalization of MoO3[sbnd]NiMoO4 nanocomposite using organic template for energy storage applicationcitations
- 2020Synthesis and analysis of ZnO-CoMoO4 incorporated organic compounds for efficient degradation of azo dye pollutants under dark ambient conditionscitations
- 2020Functionalization of MoO 3 [sbnd]NiMoO 4 nanocomposite using organic template for energy storage applicationcitations
- 2020Using soft polymer template engineering of mesoporous TiO2 scaffolds to increase perovskite grain size and solar cell efficiencycitations
- 2020Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Roylecitations
- 2020Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage propertiescitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO2(110) and model dental implant surfacescitations
- 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surfacecitations
- 2019A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materialscitations
- 2018Optical and Electrical Studies of CdS Thin Films with thickness variationcitations
- 2018Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular sizecitations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
- 2017Reduced electrical performance of Zn enriched ZnTe nanoinclusion semiconductors thin films for buffer layer in solar cellscitations
- 2014Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM)citations
- 2012PEGylation of nanosubstrates (Titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocompositescitations
- 2010Surface characterization of zirconia dental implantscitations
- 2007Electronic properties of the interface between p-CuI and anatase-phase n-Ti O2 single crystal and nanoparticulate surfaces: A photoemission studycitations
- 2005Resonant photoemission of transition metal perovskitescitations
- 2002Electronic structure and reactivity of TM-doped La1-xSrxCoO3 (TM = Ni, Fe) catalystscitations
Places of action
Organizations | Location | People |
---|
article
Using soft polymer template engineering of mesoporous TiO2 scaffolds to increase perovskite grain size and solar cell efficiency
Abstract
The mesoporous (meso)-TiO2 layer is a key component of high-efficiency perovskite solar cells (PSCs). Herein, pore size controllable meso-TiO2 layers are prepared using spin coating of commercial TiO2 nanoparticle (NP) paste with added soft polymer templates (SPT) followed by removal of the SPT at 500 °C. The SPTs consist of swollen crosslinked polymer colloids (microgels, MGs) or a commercial linear polymer (denoted as LIN). The MGs and LIN were comprised of the same polymer, which was poly(N-isopropylacrylamide) (PNIPAm). Large (L-MG) and small (S-MG) MG SPTs were employed to study the effect of the template size. The SPT approach enabled pore size engineering in one deposition step. The SPT/TiO2 nanoparticle films had pore sizes > 100 nm, whereas the average pore size was 37 nm for the control meso-TiO2 scaffold. The largest pore sizes were obtained using L-MG. SPT engineering increased the perovskite grain size in the same order as the SPT sizes: LIN <S-MG <L-MG and these grain sizes were larger than those obtained using the control. The power conversion efficiencies (PCEs) of the SPT/TiO2 devices were ∼20% higher than that for the control meso-TiO2 device and the PCE of the champion S-MG device was 18.8%. The PCE improvement is due to the increased grain size and more effective light harvesting of the SPT devices. The increased grain size was also responsible for the improved stability of the SPT/TiO2 devices. The SPT method used here is simple, scalable, and versatile and should also apply to other PSCs.