People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stepien, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Additive Manufacturing and Precipitation Hardening of Low-Alloyed Copper Alloys Containing Chromium and Hafnium
- 2024Effect of pre-heat temperature on enhancing the processability of pure zinc by laser-based powder bed fusion
- 2023Influence of Electron Beam Powder Bed Fusion Process Parameters at Constant Volumetric Energy Density on Surface Topography and Microstructural Homogeneity of a Titanium Aluminide Alloycitations
- 2023Process development for laser powder bed fusion of GRCop-42 using a 515 nm laser sourcecitations
- 2023Influence of Two-Step Heat Treatments on Microstructure and Mechanical Properties of a β-Solidifying Titanium Aluminide Alloy Fabricated via Electron Beam Powder Bed Fusioncitations
- 2023Locally Adapted Microstructures in an Additively Manufactured Titanium Aluminide Alloy Through Process Parameter Variation and Heat Treatmentcitations
- 2022Influence of Two-Step Heat Treatments on Microstructure and Mechanical Properties of a β-Solidifying Titanium Aluminide Alloy Fabricated via Electron Beam Powder Bed Fusioncitations
- 2022Locally adapted microstructures in an additively manufactured titanium aluminide alloy through process parameter variation and heat treatmentcitations
- 2022Pure Copper: Advanced Additive Manufacturingcitations
- 2021Additive manufacturing of titanium with different surface structures for adhesive bonding and thermal direct joining with fiber-reinforced polyether-ether-ketone (PEEK) for lightweight design applicationscitations
- 2021Electron beam powder bed fusion of γ-titanium aluminidecitations
- 2021Electron beam powder bed fusion of g-Titanium aluminide: Effect of processing parameters on part density, surface characteristics, and aluminum contentcitations
- 2021Additive Manufacturing of Titanium with Different Surface Structures for Adhesive Bonding and Thermal Direct Joining with Fiber-Reinforced Polyether-Ether-Ketone (PEEK) for Lightweight Design Applicationscitations
- 2020Additive manufacturing of complex pure copper parts via binder jetting
- 2020Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devicescitations
- 2019Laser Treatment as Sintering Process for Dispenser Printed Bismuth Telluride Based Pastecitations
- 2019Ammonia Plasma-Induced n-Type Doping of Semiconducting Carbon Nanotube Films: Thermoelectric Properties and Ambient Effectscitations
- 2018Pure Copper : Advanced Additive Manufacturing
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2017Thermal operating window for PEDOT:PSS films and its related thermoelectric propertiescitations
- 2016Investigation of the Thermoelectric Power Factor of KOH-Treated PEDOT:PSS Dispersions for Printing Applicationscitations
- 2016Thermoelectric PEDOT:PSS and single-walled carbon nanotubes composites for printing applications
- 2015Ambient effects on the electrical conductivity of carbon nanotubescitations
- 2015Ambient effects on the electrical conductivity of carbon nanotubescitations
- 2014Optical absorption spectroscopy and properties of single walled carbon nanotubes at high temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices
Abstract
S.2556-2564 ; We report a detailed experimental and theoretical study on thermoelectric properties of boron-doped single-walled carbon nanotubes (B-SWCNTs), which are versatile building blocks of flexible thermoelectric devices. Implantations of substitutional boron dopants (0.1-0.5 atom %) in SWCNTs are realized using thermal diffusion. The after-synthesis boron doping simultaneously improves the Seebeck coefficient (S) and electrical conductivity (s) of SWCNT networks, leading to an S2s value of 226 mW/mK2. First-principle calculations indicate that a few tenths atom % of substitutional boron atoms improve the S value of semi-conducting SWCNTs but reduce the electron conductance in individual SWCNTs. The high s of B-SWCNT networks is attributed to the improved electrical transport between laterally contacted metallic and semi-conducting nanotubes. The produced B-SWCNTs are stable over high-temperature annealing or processing in liquid media, which inspired us to fabricate thermoelectric modules by a low-cost printing method. The modules demonstrate an increased thermoelectric efficiency by 76% compared to those with undoped SWCNTs. This work provides a feasible fabrication strategy and physical insights for B-SWCNT-based flexible thermoelectrics. ; 3 ; Nr.3