People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vellaisamy, Arul Lenus Roy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recoverycitations
- 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb devicecitations
- 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performancecitations
- 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiencycitations
- 2023Eco-Friendly Cerium–Cobalt Counter-Doped Bi2Se3 Nanoparticulate Semiconductorcitations
- 2022Hierarchically Interlaced 2D Copper Iodide/MXene Composite for High Thermoelectric Performancecitations
- 2022Amorphous carbon nano-inclusions for strategical enhancement of thermoelectric performance in Earth-abundant Cu3SbS4citations
- 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Compositescitations
- 2022Thermoelectric properties of sulfide and selenide-based materialscitations
- 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applicationscitations
- 2021Ultralow Thermal Conductivity in Dual-Doped n-Type Bi2Te3 Material for Enhanced Thermoelectric Propertiescitations
- 2021Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaicscitations
- 2021Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent substitution of erbium in bismuth selenide thermoelectric materialcitations
- 2019Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materialscitations
- 2019Efficient oxygen electroreduction kinetics by titanium carbide@nitrogen doped carbon nanocompositecitations
- 2019Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysiscitations
- 2007Nanocomposite field effect transistors based on zinc oxide/polymer blendscitations
- 2004Influence of the substrate temperature to the performance of tris (8-hydroxyquinoline) aluminum based organic light emitting diodescitations
Places of action
Organizations | Location | People |
---|
article
Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applications
Abstract
Thermoelectric composites are known for their enhanced power conversion performance via interfacial engineering and intensified mechanical, structural, and thermal properties. However, the selection of these nanoinclusions, for example, their type, size effect, volume fraction, distribution uniformity, coherency with host, carrier dynamics, and physical stability, plays a crucial role in modifying the host material thermoelectric properties. In this Review, we classify the nanoinclusions into five types: carbon allotropes, secondary thermoelectric phases, metallic materials, insulating oxides, and others. On the basis of the classification, we discuss the mechanisms involved in improving the <i>ZT</i> of nanocomposites involving reduction of thermal conductivity (<i>κ</i>) by phonon scattering, improving the Seebeck coefficient (<i>α</i>) via energy filtering effect and the electrical conductivity (<i>σ</i>) by carrier injection or carrier channeling. Comprehensibly, we validate that adding nanoinclusions with high electrical and low thermal conductivity as compared to the matrix material is the best way to optimize the interlocked thermoelectric parameters. Thus, collective doping and nanoinclusions in thermoelectric materials is the best possible solution to achieve a higher power conversion efficiency equivalent to other renewable energy technologies.