Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kozikov, Aleksey

  • Google
  • 6
  • 41
  • 209

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Resonant band hybridization in alloyed transition metal dichalcogenide heterobilayers2citations
  • 2024Resonant Band Hybridization in Alloyed Transition Metal Dichalcogenide Heterobilayers.citations
  • 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe2/WSe2 Heterobilayers with Transfer-Induced Layer Corrugation34citations
  • 2020Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe 2 /WSe 2 Heterobilayers with Transfer-Induced Layer Corrugation34citations
  • 2018Anomalous twin boundaries in two dimensional materials62citations
  • 2017Observing imperfection in atomic interfaces for van der Waals heterostructures77citations

Places of action

Chart of shared publication
Taniguchi, Takashi
2 / 58 shared
Alexeev, Evgeny M.
4 / 4 shared
Louca, Charalambos
2 / 3 shared
Falko, Vladimir
2 / 11 shared
Ruiztijerina, David A.
1 / 1 shared
Catanzaro, Alessandro
2 / 3 shared
Pisoni, Riccardo
2 / 2 shared
Hague, Lee
4 / 5 shared
Ensslin, Klauss
1 / 1 shared
Genco, Armando
2 / 5 shared
Watanabe, Kenji
2 / 49 shared
Sortino, Luca
2 / 3 shared
Gillard, Daniel J.
2 / 4 shared
Tartakovskii, Alexander I.
4 / 9 shared
Novoselov, Kostya S.
5 / 26 shared
Ruiz-Tijerina, David A.
1 / 1 shared
Ensslin, Klaus
1 / 4 shared
Nevison-Andrews, Harriet
2 / 2 shared
Godde, Tillmann
2 / 2 shared
Hobbs, Jamie K.
2 / 3 shared
Ares, Pablo
2 / 8 shared
Mullin, Nic
2 / 2 shared
Wang, Yibo
2 / 3 shared
Skrypka, Oleksandr
2 / 3 shared
Fumagalli, Laura
2 / 9 shared
Rooney, Ap
1 / 3 shared
Haigh, Sj
2 / 63 shared
Li, Zheling
1 / 9 shared
Gorbachev, Roman V.
2 / 11 shared
Auton, G.
1 / 1 shared
Young, Robert J.
1 / 67 shared
Ding, F.
1 / 3 shared
Gholinia, Ali
1 / 39 shared
Zhao, W.
1 / 8 shared
Cao, Yang
1 / 4 shared
Rudenko, Alexander N.
1 / 4 shared
Hamer, Matthew
1 / 4 shared
Prestat, Eric
1 / 22 shared
Withers, Freddie
1 / 2 shared
Katsnelson, Mikhail I.
1 / 8 shared
Rooney, Aidan
1 / 4 shared
Chart of publication period
2024
2020
2018
2017

Co-Authors (by relevance)

  • Taniguchi, Takashi
  • Alexeev, Evgeny M.
  • Louca, Charalambos
  • Falko, Vladimir
  • Ruiztijerina, David A.
  • Catanzaro, Alessandro
  • Pisoni, Riccardo
  • Hague, Lee
  • Ensslin, Klauss
  • Genco, Armando
  • Watanabe, Kenji
  • Sortino, Luca
  • Gillard, Daniel J.
  • Tartakovskii, Alexander I.
  • Novoselov, Kostya S.
  • Ruiz-Tijerina, David A.
  • Ensslin, Klaus
  • Nevison-Andrews, Harriet
  • Godde, Tillmann
  • Hobbs, Jamie K.
  • Ares, Pablo
  • Mullin, Nic
  • Wang, Yibo
  • Skrypka, Oleksandr
  • Fumagalli, Laura
  • Rooney, Ap
  • Haigh, Sj
  • Li, Zheling
  • Gorbachev, Roman V.
  • Auton, G.
  • Young, Robert J.
  • Ding, F.
  • Gholinia, Ali
  • Zhao, W.
  • Cao, Yang
  • Rudenko, Alexander N.
  • Hamer, Matthew
  • Prestat, Eric
  • Withers, Freddie
  • Katsnelson, Mikhail I.
  • Rooney, Aidan
OrganizationsLocationPeople

article

Observing imperfection in atomic interfaces for van der Waals heterostructures

  • Haigh, Sj
  • Cao, Yang
  • Rudenko, Alexander N.
  • Gorbachev, Roman V.
  • Kozikov, Aleksey
  • Hamer, Matthew
  • Prestat, Eric
  • Novoselov, Kostya S.
  • Withers, Freddie
  • Katsnelson, Mikhail I.
  • Rooney, Aidan
Abstract

Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the firstsystematic study of interfaces in van der Waals heterostructure using cross sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS2 or WS2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe2 and WSe2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN: interfaces which are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two dimensional (2D) crystal NbSe2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glove-box transfer significantly improves the quality of interfaces for WSe2 compared to processing in air.

Topics
  • density
  • theory
  • defect
  • density functional theory
  • two-dimensional
  • interfacial