People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holm, René
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2024Impact of drug compounds mechanical/deformation properties on the preparation of nano- and microsuspensionscitations
- 2024A Systematic Investigation of Process Parameters for Small-Volume Aqueous Suspension Production by the Use of Focused Ultrasonication
- 2024A Systematic Investigation of Process Parameters for Small-Volume Aqueous Suspension Production by the Use of Focused Ultrasonication
- 2024Is roller milling – the low energy wet bead media milling – a reproducible and robust milling method for formulation investigation of aqueous suspensions?citations
- 2021Simultaneous determination of cyclodextrin stability constants as a function of pH and temperature – A tool for drug formulation and process designcitations
- 2020In Vivo Performance of Innovative Polyelectrolyte Matrices for Hot Melt Extrusion of Amorphous Drug Systemscitations
- 2019Modified Polymer Matrix in Pharmaceutical Hot Melt Extrusion by Molecular Interactions with a Carboxylic Coformercitations
- 2019Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transportcitations
- 2018Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacincitations
- 2018Comparison of two DSC-based methods to predict drug-polymer solubilitycitations
- 2017Amorphization within the tabletcitations
- 2016Roller compaction scale-up using roll width as scale factor and laser-based determined ribbon porosity as critical material attributecitations
- 2016Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E POcitations
- 2015Evaluation of drug-polymer solubility curves through formal statistical analysiscitations
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2008Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30citations
Places of action
Organizations | Location | People |
---|
article
Modified Polymer Matrix in Pharmaceutical Hot Melt Extrusion by Molecular Interactions with a Carboxylic Coformer
Abstract
<p>Hot melt extrusion (HME) has become an essential technology to cope with an increasing number of poorly soluble drug candidates. However, there is only a limited choice of pharmaceutical polymers for obtaining suitable amorphous solid dispersions (ASD). Considerations of miscibility, stability, and biopharmaceutical performance narrow the selection of excipients, and further technical constraints arise from needed pharmaceutical processing. The present work introduces the concept of molecularly targeted interactions of a coformer with a polymer to design a new matrix for HME. Model systems of dimethylaminoethyl methacrylate copolymer, Eudragit E (EE), and bicarboxylic acids were studied, and pronounced molecular interactions were demonstrated by<sup>1</sup>H,<sup>13</sup>C NMR, FTIR spectroscopy, as well as by different techniques of microscopic imaging. A difference was shown between new formulations exploiting specifically the targeted molecular interactions and a common drug-polymer formulation. More specifically, a modified matrix with malic acid exhibited a technical extrusion advantage over polymer alone, and there was a benefit of improved physical stability revealed for the drug fenofibrate. This model compound displayed greatly enhanced dissolution kinetics from the ASD formulations. It can be concluded that harnessing molecularly designed polymer modifications by coformers has much potential in solid dispersion technology and in particular regarding HME processing.</p>