Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haugstad, Greg D.

  • Google
  • 2
  • 6
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Crystallinity-Independent Toughness in Renewable Poly(l-lactide) Triblock Plastics3citations
  • 2009Shared Catalysis in Virus Entry and Bacterial Cell Wall Depolymerization27citations

Places of action

Chart of shared publication
Krajovic, Daniel M.
1 / 1 shared
Xiang, Ye
1 / 2 shared
Popham, David L.
1 / 1 shared
Anderson, Dwight L.
1 / 1 shared
Rossmann, Michael G.
1 / 1 shared
Cohen, Daniel N.
1 / 1 shared
Chart of publication period
2024
2009

Co-Authors (by relevance)

  • Krajovic, Daniel M.
  • Xiang, Ye
  • Popham, David L.
  • Anderson, Dwight L.
  • Rossmann, Michael G.
  • Cohen, Daniel N.
OrganizationsLocationPeople

article

Crystallinity-Independent Toughness in Renewable Poly(l-lactide) Triblock Plastics

  • Krajovic, Daniel M.
  • Haugstad, Greg D.
Abstract

<p>Poly(l-lactide) (PLLA)’s broad applicability is hindered by its brittleness and slow crystallization kinetics. Among the strategies for developing tough, thermally resilient PLLA-based materials, the utilization of neat PLLA block polymers has received comparatively little attention, despite its attractive technological merits. In this work, we comprehensively describe the microstructural, thermal, and mechanical properties of two compositional libraries of PLLA-rich PLLA-b-poly(γ-methyl-ϵ-caprolactone) (PγMCL)-b-PLLA (“LML”) triblock copolymers. Rubbery PγMCL domains microphase separate from the matrix in the melt and intercalate between PLLA crystal lamellae on cooling. Despite the mobility constraints associated with midblock tethering, the PLLA end-blocks crystallize as rapidly as a PLLA homopolymer control of similar molar mass. Independent of their degree of crystallinity, LML triblocks exhibit vastly improved tensile toughnesses (63-113 MJ m<sup>-3</sup>) over that of PLLA homopolymer (1.3-2 MJ m<sup>-3</sup>), with crystallinities of up to 55% and heat distortion temperatures (HDTs) as high as 148 °C. We investigated the microstructural origins of this appealing performance using X-ray scattering and microscopy. In the case of a largely amorphous PLLA matrix, the PγMCL domains cavitate to enable concurrent PLLA shear yielding and strain-induced crystallization. In highly crystalline PLLA matrices, PγMCL facilitates a lamellar-to-fibrillar transition during tensile deformation, the first such transition reported for PLLA drawn at room temperature. These results highlight the unique attributes of PLLA block polymers and prompt future architectural and processing optimizations to achieve ultratough, high-HDT PLLA block polymer plastics after a simple thermal history on economical time scales.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • mobility
  • melt
  • copolymer
  • homopolymer
  • crystallization
  • crystallinity
  • X-ray scattering
  • microscopy
  • lamellae