People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Looijmans, Stan F. S. P.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flowscitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughness
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomercitations
- 2022An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomercitations
- 2022The Role of Molar Mass in Achieving Isotropy and Inter-Layer Strength in Mat-Ex Printed Polylactic Acidcitations
- 2021Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fatecitations
- 2020Numerical analysis of the crystallization kinetics in SLScitations
- 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineeringcitations
- 2020Polarization modulated infrared spectroscopycitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
Places of action
Organizations | Location | People |
---|
article
Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenes
Abstract
The effect of maleic-anhydride-grafted polypropylene compatibilizer on the crystallization behavior of two isotactic polypropylene homopolymers is experimentally investigated under both quiescent and shear flow conditions. A traditional combination of optical microscopy and calorimetric techniques is used to quantify crystal nucleation and growth rates and suggests a minute increase in nucleation density when the compatibilizer is added. The flow properties of these systems are assessed by means of oscillatory shear rheometry. The altered flow characteristics can be explained based on the molecular weight distribution of the individual blend components, and no influence of maleic anhydride incorporation on the rheological properties is found. While the addition of a small amount of this compatibilizer thus leads to only a slight acceleration of the crystallization kinetics in quiescent conditions, it markedly enhances the crystallization rate when a mild (and strong) shear flow is applied. In the latter case, the resulting morphology and crystal modification are considerably different as compared to crystallization conditions without the presence of flow; in addition to having significantly faster flow-induced crystallization kinetics (I), when the system contains maleic anhydride compatibilization, the formation of oriented structures is hindered (II), and the appearance of the β-modification is suppressed (III) with respect to the homopolymers, which in turn affects the mechanical properties of the material. This result highlights the importance of understanding the crystallization kinetics under processing relevant conditions in order to get a step closer toward full control over the crystallizing microstructure and the subsequent mechanical performance of polyolefin-based composites.