Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Armstrong, Steven

  • Google
  • 5
  • 4
  • 146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Dental adhesive microtensile bond strength following a biofilm-based in vitro aging model.6citations
  • 2020Marginal adaptation and internal indentation resistance of a Class II bulk-fill resin-based composite.citations
  • 2019Pinning-Free Evaporation of Sessile Droplets of Water from Solid Surfaces62citations
  • 2019Pinning-Free Evaporation of Sessile Droplets of Water from Solid Surfaces62citations
  • 2019The effect of aging methods on the fracture toughness and physical stability of an oxirane/acrylate, ormocer, and Bis-GMA-based resin composites.16citations

Places of action

Chart of shared publication
Mchale, Glen
2 / 10 shared
Wells, Gary
2 / 5 shared
Aguilar, Rodrigo Ledesma
1 / 3 shared
Ledesma Aguilar, Rodrigo
1 / 1 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Mchale, Glen
  • Wells, Gary
  • Aguilar, Rodrigo Ledesma
  • Ledesma Aguilar, Rodrigo
OrganizationsLocationPeople

article

Pinning-Free Evaporation of Sessile Droplets of Water from Solid Surfaces

  • Mchale, Glen
  • Wells, Gary
  • Aguilar, Rodrigo Ledesma
  • Armstrong, Steven
Abstract

<p>Contact-line pinning is a fundamental limitation to the motion of contact lines of liquids on solid surfaces. When a sessile droplet evaporates, contact-line pinning typically results in either a stick-slip evaporation mode, where the contact line pins and depins from the surface in an uncontrolled manner, or a constant contact-area mode with a pinned contact line. Pinning prevents the observation of the quasi-equilibrium constant contact-angle mode of evaporation, which has never been observed for sessile droplets of water directly resting on a smooth, nontextured, solid surface. Here, we report the evaporation of a sessile droplet from a flat glass substrate treated with a smooth, slippery, omni-phobic covalently attached liquid-like coating. Our characterization of the surfaces shows high contact line mobility with an extremely low contact-angle hysteresis of ∼1° and reveals a step change in the value of the contact angle from 101° to 105° between a relative humidity (RH) of 30 and 40%, in a manner reminiscent of the transition observed in a type V adsorption isotherm. We observe the evaporation of small sessile droplets in a chamber held at a constant temperature, T = (25.0 ± 0.1) °C and at constant RH across the range RH = 10-70%. In all cases, a constant contact-angle mode of evaporation is observed for most of the evaporation time. Furthermore, we analyze the evaporation sequences using the Picknett and Bexon ideal constant contact-angle mode for diffusion-limited evaporation. The resulting estimate for the diffusion coefficient, D<sub>E</sub> , of water vapor in air of D<sub>E</sub> = (2.44 ± 0.48) × 10<sup>-5</sup> m<sup>2</sup> s<sup>-1</sup> is accurate to within 2% of the value reported in the literature, thus validating the constant contact-angle mode of the diffusion-limited evaporation model.</p>

Topics
  • impedance spectroscopy
  • surface
  • mobility
  • glass
  • glass
  • evaporation