Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nartowski, Karol P.

  • Google
  • 1
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Structure and mobility of lactose in lactose/sodium montmorillonite nanocomposites13citations

Places of action

Chart of shared publication
Khimyak, Yaroslav Z.
1 / 13 shared
Holmboe, Michael
1 / 1 shared
Mahlin, Denny
1 / 5 shared
Hellrup, Joel
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Khimyak, Yaroslav Z.
  • Holmboe, Michael
  • Mahlin, Denny
  • Hellrup, Joel
OrganizationsLocationPeople

article

Structure and mobility of lactose in lactose/sodium montmorillonite nanocomposites

  • Nartowski, Karol P.
  • Khimyak, Yaroslav Z.
  • Holmboe, Michael
  • Mahlin, Denny
  • Hellrup, Joel
Abstract

This study aims at investigating the molecular level organization and molecular mobility in montmorillonite nanocomposites with the uncharged organic low-molecular-weight compound lactose commonly used in pharmaceutical drug delivery, food technology, and flavoring. Nanocomposites were prepared under slow and fast drying conditions, attained by drying at ambient conditions and by spray-drying, respectively. A detailed structural investigation was performed with modulated differential scanning calorimetry, powder X-ray diffraction, solid-state nuclear magnetic resonance, scanning electron microscopy, microcalorimetry, and molecular dynamic simulations. The lactose was intercalated in the sodium montmorillonite interlayer space regardless of the clay content, drying rate, or humidity exposure. Although, the spray-drying resulted in higher proportion of intercalated lactose compared with the drying under ambient conditions, non-intercalated lactose was present at 20 wt% lactose content. This indicates limitations in maximum load capacity of nonionic organic substances into the montmorillonite interlayer space. Furthermore, a fraction of the intercalated lactose in the co-spray-dried nanocomposites diffused out from the clay interlayer space upon humidity exposure. Also, the lactose in the nanocomposites demonstrated higher molecular mobility than that of neat amorphous lactose. This study provides a foundation for understanding functional properties of nanocomposites, such as loading capacity and physical stability.

Topics
  • nanocomposite
  • compound
  • amorphous
  • mobility
  • scanning electron microscopy
  • simulation
  • Sodium
  • powder X-ray diffraction
  • differential scanning calorimetry
  • drying
  • microcalorimetry