Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aleksandrova, Irina

  • Google
  • 2
  • 6
  • 100

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Electronic and Vibrational Properties of TiS2, ZrS2, and HfS250citations
  • 2018Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2: Periodic Trends Studied by Dispersion-Corrected Hybrid Density Functional Methods50citations

Places of action

Chart of shared publication
Karttunen, Antti J.
2 / 40 shared
Tripathi, Tripurari Sharan
1 / 4 shared
Karppinen, Maarit
2 / 60 shared
Tewari, Girish C.
2 / 12 shared
Glebko, Nina
2 / 2 shared
Tripathi, Tripurari S.
1 / 5 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Karttunen, Antti J.
  • Tripathi, Tripurari Sharan
  • Karppinen, Maarit
  • Tewari, Girish C.
  • Glebko, Nina
  • Tripathi, Tripurari S.
OrganizationsLocationPeople

article

Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2

  • Karttunen, Antti J.
  • Aleksandrova, Irina
  • Tripathi, Tripurari Sharan
  • Karppinen, Maarit
  • Tewari, Girish C.
  • Glebko, Nina
Abstract

<p>The electronic and vibrational properties of TiS2, ZrS2, and HfS2 have been studied using dispersion-corrected hybrid density functional methods. The periodic trends in electronic band structures, electronic transport coefficients, IR and Raman spectra, and phonon dispersion relations were investigated. Comparison to the available experimental data shows that the applied DFT methodology is suitable for the investigation of the layered transition metal dichalcogenide materials with weak interlayer van der Waals interactions. The choice of damping function in the D3 dispersion correction proved to have a surprisingly large effect. Systematic investigation of the periodic trends within group 4 disulfides reveals that TiS2 shows many differences to ZrS2 and HfS2 due to the more covalent M-S bonding in TiS2. ZrS2 and HfS2 mainly show differences for properties where the atomic mass plays a role. All three compounds show similar Seebeck coefficients but clear differences in the relative electrical conductivity of cross- and in-plane directions. The transport and vibrational properties of thin TiS2 single crystals were also investigated experimentally.</p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • compound
  • single crystal
  • layered
  • density functional theory
  • electrical conductivity
  • band structure