People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bliem, Roland
University of Amsterdam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Bridging the gap between high-entropy alloys and metallic glasses:Control over disorder and mechanical properties of coatings
- 2023Femtosecond Laser-Induced Emission of Coherent Terahertz Pulses from Ruthenium Thin Filmscitations
- 2023Identifying silicides via plasmon loss satellites in photoemission of the Ru-Si systemcitations
- 2023Why Teflon is so slippery while other polymers are notcitations
- 2022Electronic and structural properties of crystalline and amorphous (TaNbHfTiZr)C from first principlescitations
- 2022Electronic and structural properties of crystalline and amorphous (TaNbHfTiZr)C from first principlescitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2021The influence of corrosion on diamond-like carbon topography and friction at the nanoscalecitations
- 2021Hf deposition stabilizes the surface chemistry of perovskite manganite oxidecitations
- 2021Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxidescitations
- 2020Thermally driven interfacial degradation between Li7La3Zr2O12 electrolyte and LiNi0.6Mn0.2Co0.2O2 cathodecitations
- 2020Shape-Preserving Chemical Conversion of Architected Nanocompositescitations
- 2015Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surfacecitations
Places of action
Organizations | Location | People |
---|
article
Hf deposition stabilizes the surface chemistry of perovskite manganite oxide
Abstract
Stable composition and catalytic activity of surfaces are among the key requirements for materials employed in energy storage and conversion devices, such as solid oxide fuel cells (SOFCs). Perovskite oxides that serve as cathode in SOFCs suffer from segregation of the aliovalent substitutional cations and the formation of an inert, non-conductive phase at the surface. Here, we demonstrate that the surface of the state-of-the-art SOFC cathode material La 0.8 Sr 0.2 MnO 3 (LSM) is stabilized against the segregation of Sr at high temperature by submonolayer coverages of Hf. The Hf is vapordeposited onto the LSM thin film surface by e-beam evaporation. Using in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), we analyze the surface composition of LSM thin films. Half the LSM surface was kept as-prepared, and half was Hf-modified, for a direct comparison of untreated and Hf-treated regions on the same sample. The formation of a binary SrO x surface species is quantified as descriptor for surface degradation. The onset of Sr segregation is observed at 450 °C on the bare LSM, followed by a substantial advance at 550 °C. Hf-treated regions of the same LSM surface exhibit significantly less Sr surface segregation at 450-550 °C. We interpret this stabilization imparted by Hf to arise from the suppression of the electrostatic attraction of Sr 2+ cations to surface oxygen vacancies. Doping the surface layer with Hf, that has a higher affinity to oxygen, reduces this attraction by decreasing the surface oxygen vacancy concentration. In doing so, the use of physical vapor deposition highlights the direct role of the metal species in this system and excludes artifacts that could be introduced via chemical routes. The present work demonstrates this stabilizing effect of Hf on the surface of LSM, broadening the relevance of our prior findings on surface metal doping of other perovskite oxides.