People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wohlleben, Wendel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Influence of plastic shape on interim fragmentation of compostable materials during compostingcitations
- 2024Oxide-Perovskites for Automotive Catalysts Biotransform and Induce Multicomponent Clearance and Hazardcitations
- 2024Behaviour of advanced materials in environmental aquatic media – dissolution kinetics and dispersion stability of perovskite automotive catalystscitations
- 2023Fragmentation and Mineralization of a Compostable Aromatic–Aliphatic Polyester during Industrial Compostingcitations
- 2023Polymers of low concern? Assessment of microplastic particles used in 3D printing regarding their toxicity on Raphidocelis subcapitata and Daphnia magnacitations
- 2022Analytical and toxicological aspects of nanomaterials in different product groups:Challenges and opportunitiescitations
- 2022Analytical and toxicological aspects of nanomaterials in different product groupscitations
- 2022Analytical and toxicological aspects of nanomaterials in different product groups: challenges and opportunitiescitations
- 2022Effect of Polymer Properties on the Biodegradation of Polyurethane Microplasticscitations
- 2017Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leachingcitations
- 2017Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leachingcitations
- 2017Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leachingcitations
- 2017Nano-object release during machining of polymer-based nanocomposites depends on process factors and the type of nanofillercitations
- 2017Airborne engineered nanomaterials in the workplace-a review of release and worker exposure during nanomaterial production and handling processescitations
- 2016Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implicationscitations
- 2016Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approachcitations
- 2015Measuring nanomaterial release from carbon nanotube composites: review of the state of the sciencecitations
- 2013Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materialscitations
- 2013Scenarios and methods that induce protruding or released CNTs after degradation of nanocomposite materials Technology Transfer and Commercialization of Nanotechnologycitations
- 2013Elastic CNT-polyurethane nanocomposite:Synthesis, performance and assessment of fragments released during usecitations
- 2013Elastic CNT–polyurethane nanocomposite: synthesis, performance and assessment of fragments released during usecitations
- 2011On the Lifecycle of Nanocomposites: Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four Nanocompositescitations
- 2010Analytical ultracentrifugation of latexes
- 2007Artificial Opals as Nanophotonic Materials for Optics Communicationscitations
- 2007Artificial Opals as Nanophotonic Materials for Optical Communicationcitations
Places of action
Organizations | Location | People |
---|
article
Fragmentation and Mineralization of a Compostable Aromatic–Aliphatic Polyester during Industrial Composting
Abstract
Compostable plastics support the separate collection of organic waste. However, there are concerns that the fragments generated during disintegration might not fully biodegrade and leave persistent microplastic in compost. We spiked particles of an aromatic–aliphatic polyester containing polylactide into compost and then tracked disintegration under industrial composting conditions. We compared the yields against polyethylene. The validity of the extraction protocol and complementary microscopic methods (μ-Raman and fluorescence) was assessed by blank controls, spike controls, and prelabeled plastics. Fragments of 25–75 μm size represented the most pronounced peak of interim fragmentation, which was reached already after 1 week of industrial composting. Larger sizes peaked earlier, while smaller sizes peaked later and remained less frequent. For particles of all sizes, count and mass decreased to blank level when 90% of the polymer carbon were transformed into CO2. Gel permeation chromatography (GPC) analysis suggested depolymerization as the main driving force for disintegration. A transient shift of the particle composition to a lower percentage of polylactide was observed. Plastic fragmentation during biodegradation is the expected route for decomposing, but no accumulation of particulate fragments of any size was observed.