People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seger, Brian
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Preventing Alloy Electrocatalyst Segregation in Air Using Sacrificial Passivating Overlayers
- 2023Tuning Surface Reactivity and Electric Field Strength via Intermetallic Alloyingcitations
- 2022Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Aucitations
- 2021Semitransparent Selenium Solar Cells as a Top Cell for Tandem Photovoltaicscitations
- 2020Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorberscitations
- 2020Parallel evaluation of the BiI 3 , BiOI, and Ag 3 BiI 6 layered photoabsorberscitations
- 2019Shining Light on Sulfide Perovskites: LaYS 3 Material Properties and Solar Cellscitations
- 2019Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cellscitations
- 2019Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activationcitations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS 3citations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3citations
- 2015Crystalline TiO 2 : A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodescitations
- 2015Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodescitations
- 2014Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodescitations
- 2014Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Filmscitations
- 2013Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolutioncitations
Places of action
Organizations | Location | People |
---|
article
Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorbers
Abstract
The bismuth-based (oxy)iodides BiI<sub>3</sub>, BiOI and Ag<i><sub>x</sub></i>BiI<sub><i>x</i>+3</sub> share similar layered crystal structures, optimal band gaps for top absorbers in tandem solar cells, and moderate synthesis temperatures. Similarly to halide perovskite absorbers, they contain a heavy cation with a lone pair of electrons (Bi<sup>3+</sup>) which has been proposed as an important feature enabling defect tolerance in perovskites.The aim of this work is to grow and characterize BiI<sub>3</sub>, BiOI, and Ag<sub>3</sub>BiI<sub>6</sub> absorbers and solar cells using a consistent synthesis and analysis routine. In this way, the individual strengths and weaknesses of the three absorbers, as well as their common challenges, can be outlined.The proposed synthesis method based on (oxy)iodization of metallic precursor films results in similar room-temperature photoluminescence features in all three materials, possibly indicating a similar degree of defect tolerance. At the device level, the open circuit voltage of BiI3 solar cells and the fill factor of BiOI solar cells are improved compared to their respective state of the art. To improve short circuit currents, control of growth orientation should be a priority in view of the anisotropic properties of these compounds. P-type bulk doping and selection of hole transport layers with deep valence bands are also key areas for future work. Beyond photovoltaics, the very low (<1.1) dark diode ideality factor in BiI<sub>3</sub> devices and the existence of both electronic and ionic conduction in Ag<sub>3</sub>BiI<sub>6</sub> may open up applications in other areas of optoelectronics.