People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Janes, Dustin W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016Orthogonally Spin-Coated Bilayer Films for Photochemical Immobilization and Patterning of Sub-10-Nanometer Polymer Monolayerscitations
- 2016Marangoni instability driven surface relief grating in an azobenzene-containing polymer filmcitations
- 2015Modulating Solubility and Enhancing Reactivity of Photo-Cross-Linkable Poly(styrene sulfonyl azide-alt-maleic anhydride) Thin Filmscitations
- 2015Surface tension driven flow in a low molecular weight photopolymer
- 2015Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tensioncitations
- 2014A photochemical approach to directing flow and stabilizing topography in polymer filmscitations
- 2014Precision Marangoni-driven patterningcitations
- 2014Surface energy gradient driven convection for generating nanoscale and microscale patterned polymer films using photosensitizerscitations
- 2013Directing convection to pattern thin polymer filmscitations
- 2012Patterning by photochemically directing the Marangoni Effectcitations
Places of action
Organizations | Location | People |
---|
article
Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension
Abstract
<p>The Marangoni effect causes liquids to flow toward localized regions of higher surface tension. In a thin film, such flow results in smooth thickness variations and may represent a practically useful route to manufacture topographically patterned surfaces. An especially versatile material for this application should be able to be spatially programmed to possess regions of higher or lower relative surface tension so that the direction of flow into or out of those areas could be directed with precision. To this end, we describe here a photopolymer whose melt-state surface tension can be selectively raised or lowered in the light exposed regions depending on the wavelength and dose of applied light. The direction of Marangoni flow into or out of the irradiated areas agreed with expected surface tension changes for photochemical transformations characterized by a variety of spectroscopic techniques and chromatographic experiments. The maximum film thickness variations achieved in this work are over 200 nm, which developed after only 5 min of thermal annealing. Both types of flow patterns can even be programmed sequentially into the same film and developed in a single thermal annealing step, which to our knowledge represents the first example of harnessing photochemical stimuli to bidirectionally control flow. (Figure Presented).</p>