People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kudrawiec, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024The Defects Genome of Janus Transition Metal Dichalcogenidescitations
- 2023Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser meltingcitations
- 2022Pressure-Driven Phase Transition in Two-Dimensional Perovskite MHy2PbBr4citations
- 2022Pressure-Driven Phase Transition in Two-Dimensional Perovskite MHy2PbBr4
- 2022Electron Beam-Induced Reduction of Cuprite
- 2022Inkjet Printing of Quasi‐2D Perovskite Layers with Optimized Drying Protocol for Efficient Solar Cellscitations
- 2022Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting
- 2022Mixology of MA1- xEAxPbI3Hybrid Perovskitescitations
Places of action
Organizations | Location | People |
---|
article
Mixology of MA1- xEAxPbI3Hybrid Perovskites
Abstract
<p>Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA<sub>1-x</sub>EA<sub>x</sub>PbI<sub>3</sub>(x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.</p>