Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Prerna

  • Google
  • 1
  • 6
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Properties6citations

Places of action

Chart of shared publication
Seppälä, Jukka
1 / 42 shared
Baniasadi, Hossein
1 / 21 shared
Ghosh, Rupita
1 / 1 shared
Mehrotra, Shreya
1 / 1 shared
Kumar, Ashok
1 / 21 shared
Shaikh, Shazia
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Seppälä, Jukka
  • Baniasadi, Hossein
  • Ghosh, Rupita
  • Mehrotra, Shreya
  • Kumar, Ashok
  • Shaikh, Shazia
OrganizationsLocationPeople

article

Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Properties

  • Seppälä, Jukka
  • Baniasadi, Hossein
  • Ghosh, Rupita
  • Singh, Prerna
  • Mehrotra, Shreya
  • Kumar, Ashok
  • Shaikh, Shazia
Abstract

Traditional metal-alloy bone fixation devices provide structural support for bone repair but have limitations in actively promoting bone healing and often require additional surgeries for implant removal. In this study, we focused on addressing these challenges by fabricating biodegradable composites using poly(lactic acid) (PLA) and strontium-substituted nanohydroxyapatite (SrHAP) via melt compounding and injection molding. Various percentages of SrHAP (5, 10, 20, and 30% w/w) were incorporated into the PLA matrix. We systematically investigated the structural, morphological, thermal, mechanical, rheological, and dynamic mechanical properties of the prepared composites. Notably, the tensile modulus, a critical parameter for orthopedic implants, significantly improved from 2.77 GPa in pristine PLA to 3.73 GPa in the composite containing 10% w/w SrHAP. The incorporation of SrHAP (10% w/w) into the PLA matrix led to an increased storage modulus, indicating a uniform dispersion of SrHAP within the PLA and good compatibility between the polymer andnanoparticles. Moreover, we successfully fabricated screws using PLA composites with 10% (w/w) SrHAP, demonstrating their formability at room temperature and radiopacity when observed under X-ray microtomography (micro-CT). Furthermore, the water contact angle decreased from 93 ± 2° for pristine PLA to 75 ± 3° for the composite containing SrHAP, indicating better surface wettability. To assess the biological behavior of the composites, we conducted in vitro cell-material tests, which confirmed their osteoconductive and osteoinductive properties. These findings highlight the potential of our developed PLA/SrHAP10 (10% w/w) composites as machinable implant materials for orthopedic applications. In conclusion, our study presents the fabrication and comprehensive characterization of biodegradable composites comprising PLA and strontium-substituted nanohydroxyapatite (SrHAP). These composites exhibit improved mechanical properties, formability, and radiopacity while also demonstrating desirable biological behavior. Our results suggest that these PLA/SrHAP10 composites hold promise as machinable implant materials for orthopedic applications.

Topics
  • dispersion
  • surface
  • polymer
  • melt
  • strength
  • Strontium
  • composite
  • injection molding