People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scharnweber, D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2008Characterisation of bone mineral density around modified titanium implants in an osteoporotic rat model with synchrotron microcomputed tomography
- 2008Nanoindentation and electron microscopy of bony tissue around biofunctionalized titanium implants
- 2003Electrochemically assisted deposition of thin calcium phosphate coatings at near‐physiological pH and temperaturecitations
- 2002Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurementscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements
Abstract
<p>Titanium and titanium alloys (e.g. Ti6Al4V) are increasingly used as medical implant materials in a wide variety of applications. So far, many surface properties of the passive layer considered to explain interactions with biological tissues are deduced from those of the crystalline phases of titanium dioxide (anatase, rutile, brookite), but do not necessarily correspond to those of naturally formed amorphous passive layers. We report on streaming potential and streaming current measurements on oxide layers on Ti6Al4V and Ti, carried out using a microslit electrokinetic set-up (MES) and a commercial electrokinetic analyzer (EKA, PAAR). Passive and anodic oxide layers on Ti6Al4V, as well as passive layers on titanium sputtered on glass, were investigated in this study. Isoelectric points (IEP) of ≈4.4 were found for all oxide layers. The IEP of the air-formed passive layer on Ti6Al4V did not depend on the KCl concentration. Hence, it was concluded that IEP is here identical to the point of zero charge (pzc). Controversially, the charge formation process seems to depend on the chloride ion concentration in the neutral and basic pH region.</p>