People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mclaughlin, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Machine Learning-Based Structural Health Monitoring Technique for Crack Detection and Localisation Using Bluetooth Strain Gauge Sensor Networkcitations
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2018Nanostructured nitrogen doped diamond for the detection of toxic metal ions
- 2017Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitorscitations
- 2017Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine bladescitations
- 2017Functional diamond like carbon (DLC) coatings on polymer for improved gas barrier performancecitations
- 2017Development of an Embedded Thin-film Strain-sensor-based SHM for Composite Tidal Turbine Blades
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2010Effect of thin aluminum interlayer on growth and microstructure of carbon nanotubescitations
- 2010Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor depositioncitations
- 2009Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.citations
- 2009Substrate effects on the microstructure of hydrogenated amorphous carbon filmscitations
- 2009Glycine Adsorption onto DLC and N-DLC Thin Films Studied by XPS and AFMcitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2005Electronic properties of a-CNx thin films : An x-ray-absorption and photoemission spectroscopy studycitations
- 2005Electronic structure and photoluminescence study of silicon doped diamond like carbon (Si:DLC) thin filmscitations
- 2005Structural investigation and gas barrier performance of diamond-like carbon based films on polymer substratescitations
- 2005Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser depositioncitations
- 2004Platelet adhesion on silicon modified hydrogenated amorphous carbon films.citations
- 2004Macrophage responses to vascular stent coatings.
- 2004Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon filmscitations
- 2001Electrical characteristics of nitrogen incorporated hydrogenated amorphous carboncitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2001The insulating properties of a-C:H on silicon and metal substratescitations
- 2000Nitrogen doping of amorphous DLC films by rf plasma dissociated nitrogen atom surface bombardment in a vacuumcitations
- 2000The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin filmscitations
Places of action
Organizations | Location | People |
---|
article
The insulating properties of a-C:H on silicon and metal substrates
Abstract
Amorphous carbon has many important applications. In electronic terms, its use as a dielectric is receiving greater attention. This is particularly important for applications in magnetic head devices as a reader gap insulation layer. Results are presented for resistivity and breakdown fields for hydrogenated amorphous carbon on silicon, undopedand doped with nitrogen, using an atomic flux sourer. Current-voltage characteristics were analysed using a numerical algorithm to determine trap densities. The results indicated that such films can meet the breakdown specifications, on silicon, and that nitrogen doping improves their characteristics. Thickness trends indicate improvements are likely as gaps are scaled. The density of states determination indicated that high breakdown was correlated, in the undoped case, with high DOS but this was not so for the doped films. The DOS was found to increase as the thickness decreased. On substrates other than silicon,the films were observed to have increased roughness, poorer adhesion and a more polymer-like quality. These changes were reflected in a reduction in the observed breakdown field. (C) 2001 Elsevier Science B.V, All rights reserved.