People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cheung, N. W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
GaN microcavities formed by laser lift-off and plasma etching
Abstract
Photoluminescence measurements are used to investigate GaN microcavities formed between two all-oxide distributed Bragg reflectors. The structures are fabricated using a combination of laser lift-off to separate MOVPE-grown epitaxial GaN layers from their sapphire substrates, inductively coupled plasma etching to thin the GaN and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The first mirror is deposited on the as-grown GaN surface before bonding to a silicon substrate for the laser lift-off process, which uses a 248 nm KrF laser to selectively decompose GaN at the GaN/sapphire interface. The second dielectric mirror is deposited on the GaN surface exposed by the substrate removal, in some cases following an etch-back stage. This etch-back, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length and modification of the exposed surface. Photoluminescence measurements demonstrate cavity-filtered luminescence from both etched and non-etched microcavities. Analysis of the observed modes gives cavity finesses of approximately 10 for 2.0 and 0.8 μm GaN cavities fabricated from the same wafer, indicating that the etch-back has had little effect on microcavity quality.