People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wood, R. J. K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Structure and mechanical properties of Ce-La alloys containing 3- 10 wt. % Lacitations
- 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMScitations
- 2019The effect of over-based calcium sulfonate detergent additives on white etching crack (WEC) formation in rolling contact fatigue tested 100Cr6 steelcitations
- 2018Thermal desorption analysis of hydrogen in non-hydrogen-charged rolling contact fatigue-tested 100Cr6 steelcitations
- 2018The evolution of white etching cracks (WECs) in rolling contact fatigue-tested 100Cr6 steelcitations
- 2015Electrochemical detection of cupric ions with boron-doped diamond electrode for corrosion monitoring
- 2010Interpretation of electrochemical measurements made during micro-scale abrasion-corrosioncitations
- 2009A '3-body' abrasion wear study of bioceramics for total hip joint replacementscitations
- 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutionscitations
- 2009Abrasive size and concentration effects on the tribo-corrosion of cast CoCrMo alloy in simulated body fluidscitations
- 2009Micro-abrasion mechanisms of cast CoCrMo in simulated body fluidscitations
Places of action
Organizations | Location | People |
---|
article
Micro-abrasion mechanisms of cast CoCrMo in simulated body fluids
Abstract
The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.