Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Larsen, Niels Bent

  • Google
  • 22
  • 57
  • 621

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers4citations
  • 2022High Resolution Dual Material Stereolithography for Monolithic Microdevices4citations
  • 2022Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Moldingcitations
  • 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validation24citations
  • 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imaging2citations
  • 2015Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding13citations
  • 2013Injection molding of high aspect ratio sub-100 nm nanostructures95citations
  • 2013Designing CAF-adjuvanted dry powder vaccines35citations
  • 2012A Platform for Functional Conductive Polymerscitations
  • 2012Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register31citations
  • 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film15citations
  • 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments89citations
  • 2011Microwave assisted click chemistry on a conductive polymer film11citations
  • 2011Selective gas sensing for photonic crystal laserscitations
  • 2010Fast prototyping of injection molded polymer microfluidic chips26citations
  • 2010Nanostructures for all-polymer microfluidic systems42citations
  • 2010“Electro-Click” on Conducting Polymer Filmscitations
  • 2008Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylatecitations
  • 2008Conductive Polymer Functionalization by Click Chemistry111citations
  • 2007Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping20citations
  • 2006On the Injection Molding of Nanostructured Polymer Surfaces59citations
  • 2001Surface morphology of PS-PDMS diblock copolymer films40citations

Places of action

Chart of shared publication
Tomov, Borislav Gueorguiev
1 / 5 shared
Øygard, Sigrid Husebø
1 / 1 shared
Thomsen, Erik Vilain
3 / 28 shared
Jensen, Jørgen Arendt
3 / 26 shared
Ommen, Martin Lind
3 / 5 shared
Stuart, Matthias Bo
1 / 7 shared
Diederichsen, Søren Elmin
1 / 4 shared
Schmidleithner, Christina
1 / 2 shared
Zhang, Rujing
1 / 3 shared
Larsen, Esben K. U.
1 / 2 shared
Taebnia, Nayere
1 / 2 shared
Almdal, Kristoffer
2 / 40 shared
Hobæk, Thor Christian
2 / 2 shared
Pranov, Henrik J.
2 / 2 shared
Schou, Mikkel
2 / 3 shared
Beers, Christopher
2 / 6 shared
Kafka, Jan
1 / 3 shared
Matschuk, Maria
3 / 7 shared
Rantanen, Jukka
1 / 43 shared
Ingvarsson, Pall Thor
1 / 2 shared
Hinrichs, Wouter
1 / 17 shared
Schmidt, Signe Tandrup
1 / 1 shared
Christensen, Dennis
1 / 1 shared
Foged, Camilla
1 / 8 shared
Yang, Mingshi
1 / 7 shared
Nielsen, Hanne Morck
1 / 1 shared
Andersen, Peter
1 / 3 shared
Daugaard, Anders Egede
5 / 80 shared
Hoffmann, Christian
1 / 2 shared
Hvilsted, Søren
5 / 82 shared
Lind, Johan Ulrik
5 / 7 shared
Hansen, Thomas Steen
5 / 6 shared
Andresen, Thomas Lars
1 / 2 shared
Acikgoz, Canet
1 / 1 shared
Textor, Marcus
1 / 4 shared
Christiansen, Mads Brøkner
2 / 8 shared
Buss, Thomas
2 / 4 shared
Smith, Cameron
2 / 10 shared
Kristensen, Anders
3 / 36 shared
Utko, Pawel
1 / 1 shared
Persson, Karl Fredrik
1 / 1 shared
Hansen, Thomas S.
1 / 1 shared
Nielsen, Claus Højgård
1 / 2 shared
Selmeczi, David
1 / 1 shared
Bruus, Henrik
1 / 17 shared
Jankova Atanasova, Katja
1 / 24 shared
Jiang, Juan
1 / 2 shared
Wu, Zhenning
1 / 2 shared
Benter, Maike
1 / 3 shared
Hassager, Ole
1 / 78 shared
Clark, N. B.
1 / 1 shared
Gadegaard, Nikolaj
1 / 12 shared
Rasmussen, Henrik Koblitz
1 / 62 shared
Pranov, Henrik
1 / 7 shared
Andersen, T. H.
1 / 1 shared
Johannsen, I.
1 / 2 shared
Tougaard, S.
1 / 7 shared
Chart of publication period
2023
2022
2021
2019
2015
2013
2012
2011
2010
2008
2007
2006
2001

Co-Authors (by relevance)

  • Tomov, Borislav Gueorguiev
  • Øygard, Sigrid Husebø
  • Thomsen, Erik Vilain
  • Jensen, Jørgen Arendt
  • Ommen, Martin Lind
  • Stuart, Matthias Bo
  • Diederichsen, Søren Elmin
  • Schmidleithner, Christina
  • Zhang, Rujing
  • Larsen, Esben K. U.
  • Taebnia, Nayere
  • Almdal, Kristoffer
  • Hobæk, Thor Christian
  • Pranov, Henrik J.
  • Schou, Mikkel
  • Beers, Christopher
  • Kafka, Jan
  • Matschuk, Maria
  • Rantanen, Jukka
  • Ingvarsson, Pall Thor
  • Hinrichs, Wouter
  • Schmidt, Signe Tandrup
  • Christensen, Dennis
  • Foged, Camilla
  • Yang, Mingshi
  • Nielsen, Hanne Morck
  • Andersen, Peter
  • Daugaard, Anders Egede
  • Hoffmann, Christian
  • Hvilsted, Søren
  • Lind, Johan Ulrik
  • Hansen, Thomas Steen
  • Andresen, Thomas Lars
  • Acikgoz, Canet
  • Textor, Marcus
  • Christiansen, Mads Brøkner
  • Buss, Thomas
  • Smith, Cameron
  • Kristensen, Anders
  • Utko, Pawel
  • Persson, Karl Fredrik
  • Hansen, Thomas S.
  • Nielsen, Claus Højgård
  • Selmeczi, David
  • Bruus, Henrik
  • Jankova Atanasova, Katja
  • Jiang, Juan
  • Wu, Zhenning
  • Benter, Maike
  • Hassager, Ole
  • Clark, N. B.
  • Gadegaard, Nikolaj
  • Rasmussen, Henrik Koblitz
  • Pranov, Henrik
  • Andersen, T. H.
  • Johannsen, I.
  • Tougaard, S.
OrganizationsLocationPeople

article

3D printed calibration micro-phantoms for super-resolution ultrasound imaging validation

  • Schou, Mikkel
  • Thomsen, Erik Vilain
  • Jensen, Jørgen Arendt
  • Ommen, Martin Lind
  • Beers, Christopher
  • Larsen, Niels Bent
Abstract

This study evaluates the use of 3D printed phantoms for 3D super-resolution ultrasound imaging (SRI) algorithm calibration. The main benefit of the presented method is the ability to do absolute 3D micro-positioning of sub-wavelength sized ultrasound scatterers in a material having a speed of sound comparable to that of tissue. Stereolithography is used for 3D printing soft material calibration micro-phantoms containing eight randomly placed scatterers of nominal size 205 μm205 μm200 μm. The backscattered pressure spatial distribution is evaluated to show similar distributions from micro-bubbles as the 3D printed scatterers. The printed structures are found through optical validation to expand linearly in all three dimensions by 2.6% after printing. SRI algorithm calibration is demonstrated by imaging a phantom using a /2 pitch 3 MHz 62+62 row-column addressed (RCA) ultrasound probe. The printed scatterers will act as point targets, as their dimensions are below the diffraction limit of the ultrasound system used. Two sets of 640 volumes containing the phantom features are imaged, with an intervolume uni-axial movement of the phantom of 12.5 μm, to˜ emulate a flow velocity of 2 mm/s at a frame rate of 160 Hz. The ultrasound signal is passed to a super-resolution pipeline to localise the positions of the scatterers and track them across the 640 volumes. After compensating for the phantom expansion, a scaling of 0.989 is found between the distance between the eight scatterers calculated from the ultrasound data and the designed distances. The standard deviation of the variation in the scatterer positions along each track is used as an estimate of the precision of the super-resolution algorithm, and is expected to be between the two limiting estimates of (σ<sub><i>x</i>, </sub>σ<sub><i>y</i>, </sub>σ<sub><i>z</i></sub>) = (22.7 μm, 27.6 μm, 9.7 μm) and (σ<sub><i>x</i>, </sub>σ<sub><i>y</i>, </sub>σ<sub><i>z</i></sub>) = (18.7 μm, 19.3 μm, 8.9 μm). In conclusion, this study demonstrates the use of 3D printed phantoms for determining the accuracy and precision of volumetric super-resolution algorithms. 

Topics
  • impedance spectroscopy