Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ballage, Charles

  • Google
  • 6
  • 24
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Vapor chemical composition in Electron Beam Powder Bed Fusion using Ti-6Al-4V powdercitations
  • 2023Spatiotemporal characterization of evaporated atoms during electron beam melting additive manufacturing by advanced laser diagnostics6citations
  • 2023The Use of Sacrificial Graphite-like Coating to Improve Fusion Efficiency of Copper in Selective Laser Melting2citations
  • 2022Saturation pressure of nonequilibrium titanium evaporation during additive manufacturing by electron powder bed fusion6citations
  • 2022Saturation pressure of nonequilibrium titanium evaporation during additive manufacturing by electron powder bed fusion6citations
  • 2020Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper8citations

Places of action

Chart of shared publication
El Farsy, Abderzak
3 / 4 shared
Antunes, Vinicius
1 / 1 shared
Minea, Tiberiu
6 / 14 shared
Petit-Etienne, Camille
1 / 9 shared
Chapon, Patrick
2 / 17 shared
Vasilovici, Ovidiu
1 / 1 shared
Crespi, Angela
1 / 1 shared
Pargon, Erwine
1 / 10 shared
Tighidet, Essaid Chakib
1 / 1 shared
Nordet, Guillaume
1 / 2 shared
Crespi, Ângela Elisa
2 / 3 shared
Hugon, Marie-Christine
1 / 2 shared
Peyre, Patrice
1 / 55 shared
Schiesko, Loic
1 / 2 shared
Antunes, Vinicius G.
1 / 1 shared
Seznec, Benjamin
2 / 2 shared
Schiesko, Loïc
1 / 1 shared
Farsy, Abderzak, El
1 / 1 shared
Antunes, Vinicius, G.
1 / 1 shared
Robert, Jacques
1 / 1 shared
Alvarez, José
1 / 17 shared
Hugon, Marie Christine
1 / 1 shared
Vickridge, Ian
1 / 17 shared
Lundin, Daniel
1 / 24 shared
Chart of publication period
2024
2023
2022
2020

Co-Authors (by relevance)

  • El Farsy, Abderzak
  • Antunes, Vinicius
  • Minea, Tiberiu
  • Petit-Etienne, Camille
  • Chapon, Patrick
  • Vasilovici, Ovidiu
  • Crespi, Angela
  • Pargon, Erwine
  • Tighidet, Essaid Chakib
  • Nordet, Guillaume
  • Crespi, Ângela Elisa
  • Hugon, Marie-Christine
  • Peyre, Patrice
  • Schiesko, Loic
  • Antunes, Vinicius G.
  • Seznec, Benjamin
  • Schiesko, Loïc
  • Farsy, Abderzak, El
  • Antunes, Vinicius, G.
  • Robert, Jacques
  • Alvarez, José
  • Hugon, Marie Christine
  • Vickridge, Ian
  • Lundin, Daniel
OrganizationsLocationPeople

article

Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper

  • Robert, Jacques
  • Minea, Tiberiu
  • Alvarez, José
  • Crespi, Ângela Elisa
  • Ballage, Charles
  • Hugon, Marie Christine
  • Vickridge, Ian
  • Lundin, Daniel
Abstract

International audience ; Amorphous carbon-based coatings deposited on copper substrates by magnetron sputtering at different target to -substrate distances were investigated. Films deposited at short distances as 2 cm presented the best results in terms of morphology, density, and resistivity. Ultraviolet near-infrared range spectrometry measurements determined total reflectance and ellipsometry, extinction coefficient, refraction index, and pseudo bandgap. Amorphous carbon films of 150 nm deposited at 2 cm reduced the total reflectance by up to 60 ± 5% in the near-in-fra-red range when compared to pure copper films. The addition of Fe*boosts the absorption of the coating reducing the total reflectance by up to 70 ± 5% in near-infrared. (Fe*: deposited from stainless-steel target used in direct-current magnetron sputtering). Also, it reduces the electrical resistivity by a factor of 100 compared to that of pure amorphous carbon films. The reduction in total reflectance induced by the presence of the amorphous carbon-based films on copper depends, as expected, on light penetration depth and the absorption coefficient.

Topics
  • density
  • amorphous
  • Carbon
  • resistivity
  • thin film
  • steel
  • copper
  • ellipsometry
  • spectrometry