People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Doliška, Aleš
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2014A study on the interaction of cationized chitosan with cellulose surfacescitations
- 2012Adsorption of carboxymethyl cellulose on polymer surfacescitations
- 2011Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulosecitations
- 2011Deposition of silicon doped and pure hydrogenated amorphous carbon coatings on quartz crystal microbalance sensors for protein adsorption studiescitations
Places of action
Organizations | Location | People |
---|
article
Deposition of silicon doped and pure hydrogenated amorphous carbon coatings on quartz crystal microbalance sensors for protein adsorption studies
Abstract
<p>In this study hydrogenated amorphous carbon films (a-C:H) and silicon doped hydrogenated amorphous carbon films (a-C:H:Si) with different hydrogen and silicon contents were deposited onto sensors of a quartz crystal microbalance with dissipation detection (QCM-D). The resulting films were investigated with regard to their structural and elemental compositions using Raman spectroscopy, elastic recoil detection analysis and Rutherford backscattering spectroscopy. Furthermore the surface free energy (SFE) of the films was determined using contact angle measurements. The polar part of SFE of the a-C:H:Si films was found to be adjustable by the silicon content in these films and increased by increasing amounts of silicon. Carbon films with a broad range of chemical composition showed similar structure and properties when deposited on QCM-D sensors as compared with the deposition on silicon wafers. Subsequently, the amorphous carbon coated QCM-D sensors were used to study the adsorption of human serum albumin. These QCM-D results were related to the surface properties of the films.</p>