People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moreira, Pmgp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Experimental and numerical study of the dynamic response of an adhesively bonded automotive structurecitations
- 2019Oxidative Treatment of Multi-Walled Carbon Nanotubes and its Effect on the Mechanical and Electrical Properties of Green Epoxy based Nano-Compositescitations
- 2018Parameter optimisation of friction stir welded dissimilar polymers jointscitations
- 2016Mixed-mode fatigue crack propagation rates of current structural steels applied for bridges and towers construction
- 2016Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closurecitations
- 2016Fatigue crack growth behaviour of the 6082-T6 aluminium using CT specimens with distinct notchescitations
- 2016Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Modelcitations
- 2015Fatigue life prediction based on crack growth analysis using an equivalent initial flaw size model: Application to a notched geometrycitations
- 2015Ultimate tensile strength optimization of different FSW aluminium alloy jointscitations
- 2014Friction stir welded T-joints optimizationcitations
- 2014Friction stir welded butt joints optimizationcitations
- 2013A Contribution to the Mechanical Characterization of Cu ETP Used in the Electric Motors Industry
- 2012Fatigue and fracture behaviour of friction stir welded aluminium-lithium 2195citations
- 2010Fibre Bragg grating sensors for monitoring the metal inert gas and friction stir welding processescitations
- 2008A study on the effects of dented surfaces on rolling contact fatiguecitations
- 2008Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: A comparisoncitations
- 2007Assessment of the fatigue behaviour of friction stir welded joints: Aluminium alloy 6082-T6
- 2007Fatigue behaviour of FSW and MIG weldments for two aluminium alloyscitations
- 2007Temperature field acquisition during gas metal arc welding using thermocouples, thermography and fibre Bragg grating sensorscitations
Places of action
Organizations | Location | People |
---|
article
Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure
Abstract
Several fatigue cracks growth laws have been suggested over the past 50 years. Recently, a fatigue crack propagation law was proposed by Castillo-Canteli-Siegele (CCS model) based on the assumption that fatigue crack growth takes the form of a Gumbel cumulative distribution function. Besides many physical aspects, the fatigue crack propagation laws need to account for fatigue crack opening and closure effects. Thus, in this paper a modification of the CCS fatigue crack growth law is proposed to account for the crack opening and closure effects, as well as the stress R-ratio effect, R-sigma. The fatigue crack opening and closure effects are taken into account using a plasticity-induced crack-closure model. Other fatigue crack closure models can also be used in the proposed modification of the CCS crack growth model through the quantitative parameter U = Delta K-eff/Delta K. This modified CCS crack propagation model using the effective stress intensity factor range, Delta K-eff, is a new version of an explicit fatigue crack propagation model, supported by mathematical and physical assumptions. In this paper, the proposed model is applied using the fatigue crack growth data and mechanical properties that were collected for the 2219-T851 aluminium alloy. Based on the plasticity-induced crack-closure model, which was first formulated by Newman, and in this paper modified with a boundary correction factor, F-w, the crack opening stress intensity factor, K-op, and quantitative parameter U are determined. The results showed a good agreement between the proposed modification of the CCS fatigue crack propagation model taking into account the plasticity-induced crack-closure model with the boundary correction factor and experimental results of the fatigue crack propagation data for the 2219-T851 aluminium alloy.