People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Murphy, Shane
Science Foundation Ireland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Fiber optic sensing for volcano monitoring and imaging volcanic processescitations
- 2020Surface rupture in stochastic slip modelscitations
- 2012H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPGcitations
- 2008Microtexture of magnetite thin films of (001) and (111) orientations on MgO substrates studied by electron-backscatter diffractioncitations
- 2004Study of in-plane magnetic anisotropy of ultrathin epitaxial Fe films grown on vicinal Mo(110) surfacecitations
- 2003Formation of the strain-induced electronic superstructure on the magnetite (111) surface
- 2003Scanning tunneling microscopy studies of the Fe3O4(001) surface using antiferromagnetic probescitations
- 2002Morphology and strain-induced defect structure of ultrathin epitaxial Fe films on Mo(110)citations
- 2002Charge ordering on the surface of Fe3O4(001)citations
- 2001Surface studies of the Fe/Mo(110) and Fe/W(100) epitaxial systems
Places of action
Organizations | Location | People |
---|
article
H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG
Abstract
The equilibrium hydrogen exchange rate between adsorbed and gas phase hydrogen at 1bar is measured for Pt, Ru and Rh nanoparticles supported on a sputtered HOPG substrate. The particles are prepared by Electron Beam Physical Vapor Deposition and the diameter of the particles varies between 2 and 5nm. The rate of hydrogen exchange is measured in the temperature range 40–200°C at 1bar, by utilization of the H–D exchange reaction. We find that the rate of hydrogen exchange increases with the particle diameter for all the metals, and that the rate for Ru and Rh is higher than for Pt. In the case of Pt, the equilibrium dissociative sticking probability, S, is found to be nearly independent of particle diameter. For Ru and Rh, S is found to depend strongly on particle diameter, with the larger particles being more active. The apparent energy of desorption at equilibrium, Eapp, shows a dramatic increase with decreasing particle diameter for diameters below 5nm for Ru and Rh, whereas Eapp is only weakly dependent on particle diameter for Pt. We suggest that the strong variation in the apparent desorption energy with particle diameter for Ru and Rh is due to the formation of compressed hydrogen adlayers on the terraces of the larger particles. Experiments are also carried out in the presence of 10ppm CO. Pt is found to be very sensitive to CO poisoning and the H–D exchange rate drops below the detection limit when CO is added to the gas mixture. In the case of Ru and Rh nanoparticles, CO decreases the splitting rate significantly, also at 200°C. The variation of the sensitivity to CO poisoning with particle diameter for Ru and Rh is found to be weak.