People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Hongxia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Unraveling the Mechanism of Alkali Metal Fluoride Post‐Treatment of SnO<sub>2</sub> for Efficient Planar Perovskite Solar Cellscitations
- 2024Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performancecitations
- 2024Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performancecitations
- 2024Polymorphous nanostructured metallic glass coatings for corrosion protection of medical grade Ti substratecitations
- 2023Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cucitations
- 2022Study of Pb-based and Pb-free perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport materialcitations
- 2022Simulation of perovskite solar cells using molybdenum oxide thin films as interfacial layer for enhancing device performancecitations
- 2022Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightnesscitations
- 2021Structural, electronic and optical properties of lead-free antimony-copper based hybrid double perovskites for photovoltaics and optoelectronics by first principles calculationscitations
- 2020Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cellscitations
- 2019Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillarscitations
- 2019Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronicscitations
- 2019Low hysteresis perovskite solar cells using e-beam evaporated WO3-x thin film as electron transport layercitations
- 2019Efficiency enhancement of Cu2ZnSnS4 thin film solar cells by chromium dopingcitations
- 2019Evaluation of particle beam lithography for fabrication of metallic nano-structurescitations
- 2018[Front cover] Tuning the amount of oxygen vacancies in sputter-deposited SnOx films for enhancing the performance of perovskite solar cells (ChemSusChem 18/2018)
- 2018Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles studycitations
- 2018Optimization of Mo/Cr bilayer back contacts for thin-film solar cellscitations
- 2018Thermal effect on CZTS solar cells in different process of ZnO/ITO window layer fabricationcitations
- 2018Tuning of oxygen vacancy in sputter-deposited SnOx films for enhancing the performance of perovskite solar cellscitations
- 2017Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cellscitations
- 2017Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulationscitations
- 2016Investigation of the electrochemical growth of a Cu-Zn-Sn film on a molybdenum substrate using a citrate solutioncitations
Places of action
Organizations | Location | People |
---|
article
Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu
Abstract
<p>Metallic glasses are amorphous materials that have shown prospects in several applications including biomedical due to their superior and unique mechanical, tribological, and bioactive properties. New functional coatings of thin film polymorphic metallic glasses (Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu) were deposited by co-sputtering of constituents from high purity (99.9%) targets. The thin film metallic glasses were deposited on stainless steel 316 L (SS316L) and titanium alloy (Ti) substrates. Co-sputtering offers tuneable parameters (pressure, power, and time), which fosters high-quality polymorphic films of desired thickness and composition. Surface and nanomechanical properties of the films, including surface morphology, structure, mechanical, and tribological properties were investigated using SEM, AFM, XRD, XPS, nanoindentation, and scratch test. The coated substrates exhibit uniform nanostructured films with surface roughness in the range of 1.5 to 7 nm. The XRD spectra show a dominant amorphous glassy polymorphic feature on both substrates with crystallites size in the range of 65–108 nm. Nanomechanical characteristics of the films suggest high wear resistance with film adhesion strength ranging between 624 - 2159 µN and 2273 - 2978 µN on SS316L and Ti substrates, respectively. Overall, these polymorphic Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu nanostructured uniform films with low surface roughness and high adhesion on SS316L and Ti substrates are potential functional surfaces for biomedical applications.</p>