People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hamouche, Houria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Field enhancement in hydrogen storage by periodic layered structures
Abstract
This paper investigates, through the field enhancement factor, the increase of hydrogen adsorption around the interface between a layer of hydrogen and a periodic layered structure under different incidence angles of an applied transverse magnetic polarized electromagnetic field. This periodic layered structure is composed of n-binary unit cells based on alternating a thin layer of gold with a thin layer of a metamaterial with equal negative relative permittivity while the relative permeability of the first and the second material's unit cell is considered equal to 1 and -1, respectively. We apply the effective medium theory to replace this layered structure with a single slab of a homogeneous material with an effective permittivity tensor and an effective permeability tensor. We use the Transfer Matrix Method to analyze the reflectivity spectra at the hydrogen/slab interface for adjustable layers’ thicknesses and then we derive the field enhancement factor. We obtain a significant increase of the field enhancement factor of the structure in comparison with the field enhancement factor around the interface between a layer of hydrogen and a structure composed of one gold layer.