Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamouche, Houria

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Field enhancement in hydrogen storage by periodic layered structures2citations

Places of action

Chart of shared publication
Zoppi, Guillaume
1 / 36 shared
Shabat, Mohammed M.
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Zoppi, Guillaume
  • Shabat, Mohammed M.
OrganizationsLocationPeople

article

Field enhancement in hydrogen storage by periodic layered structures

  • Zoppi, Guillaume
  • Hamouche, Houria
  • Shabat, Mohammed M.
Abstract

This paper investigates, through the field enhancement factor, the increase of hydrogen adsorption around the interface between a layer of hydrogen and a periodic layered structure under different incidence angles of an applied transverse magnetic polarized electromagnetic field. This periodic layered structure is composed of n-binary unit cells based on alternating a thin layer of gold with a thin layer of a metamaterial with equal negative relative permittivity while the relative permeability of the first and the second material's unit cell is considered equal to 1 and -1, respectively. We apply the effective medium theory to replace this layered structure with a single slab of a homogeneous material with an effective permittivity tensor and an effective permeability tensor. We use the Transfer Matrix Method to analyze the reflectivity spectra at the hydrogen/slab interface for adjustable layers’ thicknesses and then we derive the field enhancement factor. We obtain a significant increase of the field enhancement factor of the structure in comparison with the field enhancement factor around the interface between a layer of hydrogen and a structure composed of one gold layer.

Topics
  • impedance spectroscopy
  • theory
  • dielectric constant
  • gold
  • layered
  • Hydrogen
  • permeability
  • metamaterial