Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alves, Ac

  • Google
  • 3
  • 10
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Micro-arc and thermal oxidized titanium matrix composites for tribocorrosion-resistant biomedical implants4citations
  • 2022Preliminary tribo-electrochemical and biological responses of the Ti-TiB-TiCx in-situ composites intended for load-bearing biomedical implants18citations
  • 2022Microstructure, mechanical properties and corrosion behaviour of Ti6Al4V/Al2O3 joints brazed with TiCuNi filler4citations

Places of action

Chart of shared publication
Simoes, S.
3 / 40 shared
Rossi, A.
1 / 16 shared
Sousa, L.
2 / 4 shared
Costa, Na
2 / 3 shared
Toptan, F.
2 / 4 shared
Rossi, Al
1 / 1 shared
Gemini Piperni, S.
1 / 1 shared
Ribeiro, Ar
1 / 3 shared
Pinto, Amp
1 / 14 shared
Guedes, A.
1 / 26 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Simoes, S.
  • Rossi, A.
  • Sousa, L.
  • Costa, Na
  • Toptan, F.
  • Rossi, Al
  • Gemini Piperni, S.
  • Ribeiro, Ar
  • Pinto, Amp
  • Guedes, A.
OrganizationsLocationPeople

article

Micro-arc and thermal oxidized titanium matrix composites for tribocorrosion-resistant biomedical implants

  • Simoes, S.
  • Alves, Ac
  • Rossi, A.
  • Sousa, L.
  • Costa, Na
  • Toptan, F.
Abstract

Superior tribocorrosion resistance is offered by titanium matrix composites (TMCs) compared to their unreinforced matrix metal, but bioactivity concerns are raised for biomedical applications. Simple methods such as micro -arc oxidation (MAO) and thermal oxidation (TO) are employed to enhance the bioactivity and degradation resistance of Ti. However, the impact of those surface treatments on TMC surfaces is poorly understood. Therefore, the present work aimed to explore the influence of MAO and TO treatments on the surfaces of in - situ Ti-TiB-TiC and ex - situ Ti-B 4 C composites, and to assess their corrosion and tribocorrosion performance. Corrosion and tribocorrosion tests were conducted in phosphate-buffered saline solution (PBS) at body temperature. Electrochemical assays were performed by means of potentiodynamic polarization scans while additional potentiostatic tests were performed for the untreated ex - situ composites. Tribo-electrochemical assays were conducted under open circuit potential (OCP) and under normal loads of 0.5 and 10 N against a 10 mm diameter alumina ball in a reciprocating ball -on -plate tribometer. Results revealed reinforcement detachments in ex - situ composites after both treatments. This was primarily attributed to oxide layer growth at the reinforcement/reaction zone interface. Hence, the use of MAO and TO on ex - situ Ti-B 4 C composites may not be appropriate for biomedical applications, mainly because the B 4 C particles tend to detach during the treatment. In contrast, TOtreated in - situ composites displayed excellent combination of corrosion and tribocorrosion performance, even under elevated applied loads, mainly due to the existence of the oxygen diffusion zone (ODZ) beneath the oxide surface produced by TO, together with the more stable electrochemical properties observed during steady -state conditions.

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • Oxygen
  • composite
  • titanium
  • bioactivity