Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lang, S.

  • Google
  • 2
  • 17
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin films23citations
  • 2017High Temperature Hyperbolic Metamaterial for Selective Thermal Emissioncitations

Places of action

Chart of shared publication
Hahn, R.
1 / 15 shared
Glechner, Thomas
1 / 2 shared
Kiener, Daniel
1 / 39 shared
Kolozsvári, S.
1 / 3 shared
Alfreider, Markus
1 / 21 shared
Ramm, Jürgen
1 / 2 shared
Primetzhofer, Daniel
1 / 66 shared
Moraes, Vincent
1 / 1 shared
Riedl, Helmut
1 / 4 shared
Krekeler, T.
1 / 6 shared
Dyachenko, P.
1 / 2 shared
Eich, M.
1 / 5 shared
Störmer, M.
1 / 10 shared
Jacob, Z.
1 / 1 shared
Alexander, P.
1 / 1 shared
Ritter, M.
1 / 6 shared
Molesky, S.
1 / 1 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Hahn, R.
  • Glechner, Thomas
  • Kiener, Daniel
  • Kolozsvári, S.
  • Alfreider, Markus
  • Ramm, Jürgen
  • Primetzhofer, Daniel
  • Moraes, Vincent
  • Riedl, Helmut
  • Krekeler, T.
  • Dyachenko, P.
  • Eich, M.
  • Störmer, M.
  • Jacob, Z.
  • Alexander, P.
  • Ritter, M.
  • Molesky, S.
OrganizationsLocationPeople

article

Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin films

  • Lang, S.
  • Hahn, R.
  • Glechner, Thomas
  • Kiener, Daniel
  • Kolozsvári, S.
  • Alfreider, Markus
  • Ramm, Jürgen
  • Primetzhofer, Daniel
  • Moraes, Vincent
  • Riedl, Helmut
Abstract

<p>Hard protective coating materials based on transition metal nitrides and carbides typically suffer from limited fracture tolerance. To further tune these properties non-metal alloying – substituting C with N – has been proven favorable for magnetron sputtered Hf-C-N based thin films. A theoretically predicted increase in valence electron concentration (from 8.0 to 9.0 e/f.u. from Hf[sbnd]C to Hf[sbnd]N) through nitrogen alloying lead to an increase in fracture toughness (K<sub>IC</sub> obtained during in-situ SEM cantilever bending) from 1.89 ± 0.15 to 2.33 ± 0.18 MPa·m<sup>1/2</sup> for Hf<sub>0.43</sub>C<sub>0.57</sub> to Hf<sub>0.35</sub>C<sub>0.30</sub>N<sub>0.35</sub>, respectively. The hardness remains close to the super-hard regime with values of 37.8 ± 2.1 to 39.9 ± 2.7 GPa for these specific compositions. Already the addition of small amounts of nitrogen, while sputtering a ceramic Hf[sbnd]C target, leads to a drastic increase of nitrogen on the non-metallic sublattice for fcc single phased structured HfC<sub>1-x</sub>N<sub>x</sub> films, where x = N/(C + N). The here obtained results also provide experimental proof for the correlation between fracture characteristics and valence electron concentration.</p>

Topics
  • scanning electron microscopy
  • thin film
  • Nitrogen
  • nitride
  • carbide
  • hardness
  • fracture toughness
  • ion chromatography