People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nowaczyk, Grzegorz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Insight into photocatalytic degradation of ciprofloxacin over CeO2/ZnO nanocomposites: Unravelling the synergy between the metal oxides and analysis of reaction pathwayscitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imagingcitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2018Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowirescitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Functionalized multimodal ZnO@Gd <inf>2</inf> O <inf>3</inf> nanosystems to use as perspective contrast agent for MRIcitations
- 2016Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN-TiB <inf>2</inf> -TiSi <inf>2</inf>citations
- 2016Synthesis and study of bifunctional core-shell nanostructures based on ZnO@Gd<inf>2</inf>O<inf>3</inf>citations
- 2016Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofiberscitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Tuning the photodynamic efficiency of TiO<inf>2</inf> nanotubes against HeLa cancer cells by Fe-dopingcitations
- 2015Characterization of poly(ethylene 2,6-naphthalate)/polycarbonate blends by DSC, NMR off-resonance and DMTA methodscitations
- 2015Tailoring the structural, optical, and photoluminescence properties of porous silicon/TiO<inf>2</inf> nanostructurescitations
- 2015Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etchingcitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
- 2015Study on Structural, Mechanical, and Optical Properties of Al<inf>2</inf>O<inf>3</inf>-TiO<inf>2</inf> Nanolaminates Prepared by Atomic Layer Depositioncitations
- 2010Molecular dynamics in grafted polydimethylsiloxanescitations
Places of action
Organizations | Location | People |
---|
article
High temperature behavior of functional TiAlBSiN nanocomposite coatings
Abstract
<p>This article reports on the thorough characterization of structural-phase transformation in amorphous TiAlBSiN coating after high temperature annealing at 900 °C in ambient air. The influence of annealing on the tribo-mechanical behavior of the coating at nano and micro scale was also examined. The research included multiple experimental techniques, i.e. AFM, SEM, TEM, HR-TEM, EDS, XPS and Raman spectroscopy. Experiments showed that the amorphous phase of the TiAlBSiN coating undergoes a structural transformation, evidenced in the changes of parameters such as topological and chemical short-range order after the post-deposition annealing at 900 °C in air. The observed structural transformation, leads to a phase separation with the formation of a three dimensional nc-TiAl<sub>3</sub>/a-SiBN(O) nanocomposite structure. The relative increase of hardness, reduced elastic modulus, H/Er ratio and H<sup>2</sup>/E<sup>3</sup><sub>r</sub> ratio after high temperature treatment of TiAlBSiN coatings is also reported. The complex interdependency between chemistry, morphology and relative composition of the amorphous TiAlBSiN coating phase, during the high temperature treatment, with the respective change of the tribo-mechanical characteristics, are evidence of the improvement of the coating properties in response to the environmental conditions and high temperature. This work contributes particularly to the development and understanding of flexible nanocomposite protective coatings and their changes at high temperature of operation.</p>