People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Masterson, Kevin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Synergy Assessment of Four Antimicrobial Bioactive Compounds for the Combinational Treatment of Bacterial Pathogenscitations
- 2021Development of a low-temperature extrusion process for production of GRAS bioactive-polymer loaded compounds for targeting antimicrobial-resistant (AMR) bacteriacitations
Places of action
Organizations | Location | People |
---|
article
Development of a low-temperature extrusion process for production of GRAS bioactive-polymer loaded compounds for targeting antimicrobial-resistant (AMR) bacteria
Abstract
<p>Antimicrobial resistance (AMR) is recognised globally as one of the greatest threats to human and animal health; thus, discovery of alternative antibacterial agents to address AMR is a priority challenge. This study constitutes the first report of a low-melting temperature, polymer- extrusion process for the smart delivery of thermally-sensitive antimicrobial bioactives, including generally-regarded-as-safe (GRAS) bioactives derived from various sources. Bioactives were assessed before and after extrusion by determining their respective minimum inhibitory concentrations (MIC). WHO-priority AMR-bacterial isolates causing zoonotic infections were evaluated along with use of standard ATCC strains. Findings revealed that this copolymer method was capable of delivering thermally-sensitive bioactives with varying degrees of growth inhibition against the AMR-bacterial strains. The extrusion process was found to increase the effect of nisin against MRSA (4-fold increase) and L. monocytogenes (6.4-fold increase), silver nitrate (AgNO<sub>3</sub>) against E. coli (3.6-fold increase) and S. epidermidis (1.25-fold increase), and chitosan against S. aureus (1.25-fold). Findings show the potential applicability of this polymer extrusion process for developing future bioactive-loaded polymer compounds; thus, highlighting the potential of converging bio-based industry with novel materials for enabling ‘One-Health’ solutions.</p>