People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brennan, Feargal Peter
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2021The role of microstructure in the corrosion-fatigue crack growth behaviour in structural steelscitations
- 2021Objective analysis of corrosion pits in offshore wind structures using image processingcitations
- 2021Characterisation of pitting corrosion for inner section of offshore wind foundation using laser scanningcitations
- 2021Material pre-straining effects on fatigue behaviour of S355 structural steelcitations
- 2021Material pre-straining effects on fracture toughness variation in offshore wind turbine foundationscitations
- 2021Cavitation shotless peening effects on fatigue crack growth behaviour under bending loads
- 2020The influence of microstructure on the fatigue crack growth rate in marine steels in the Paris Regioncitations
- 2020Structural integrity assessment of floating offshore wind turbine support structurescitations
- 2019Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2019Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2018Experimental investigation of mechanical and fracture properties of offshore wind monopile weldments: SLIC interlaboratory test resultscitations
- 2018The influence of partial surface shot peening on fatigue crack growth behaviour of a high-strength ferritic steelcitations
- 2018Experimental investigation of mechanical and fracture properties of offshore wind monopile weldmentscitations
- 2017Fatigue crack growth rates for offshore wind monopile weldments in air and seawatercitations
- 2017Corrosion fatigue crack growth mechanisms in offshore monopile steel weldmentscitations
- 2016Review of corrosion fatigue in offshore structurescitations
- 2016A relative crack opening time correlation for corrosion fatigue crack growth in offshore structurescitations
- 2015Corrosion fatigue load frequency sensitivity analysiscitations
- 2015A study of fatigue crack growth in offshore wind monopile parent steel in air and seawater
- 2015Corrosion fatigue crack growth in offshore wind monopile steel HAZ material
- 2014A framework for variable amplitude corrosion fatigue materials tests for offshore wind steel support structurescitations
- 2013Bonding integrity study between steel pipeline and composite wraps using structural health monitoring techniquecitations
- 2013Development of a failure assessment diagram based method for engineering criticality assessment of CO2 transportation pipelinescitations
- 2013The need for variable amplitude corrosion fatigue materials data for offshore wind & marine renewable energy steel support structures
- 2012The study of composite wet wrap application with the integrated structural health monitoring approach
- 2010On the applicability of the paris law to the growth of fatigue surface cracks
- 2008Fatigue crack control in structural details using surface peening
- 2008An experimental and analytical study of fatigue crack shape control by cold workingcitations
- 2007Fatigue crack control in structural details using surface peening
- 2006Variable amplitude corrosion fatigue of high strength weldable steelcitations
- 2005Fatigue life improvement of threaded connections by cold rollingcitations
- 2004Application of short repairs for fatigue life extensioncitations
- 2003Controlled failure design of drillstring threaded connectionscitations
- 2003Design of crack removal profiles based on shape development of surface defectscitations
- 2003Fatigue analysis of drillstring threaded connections
- 2002Variable amplitude corrosion fatigue on a high strength jack-up steelcitations
Places of action
Organizations | Location | People |
---|
document
Review of corrosion fatigue in offshore structures
Abstract
<p>Offshore wind has been identified as one of the emerging sustainable energy sources in the United Kingdom. Offshore wind turbine support structures are mainly fabricated of welded tubular members, similar to structures used for oil and gas applications, and are exposed to highly dynamic, harsh marine environments. However, their structural details and design requirements are significantly different due to the magnitude and frequency of operational and environmental loadings acting on the support structures. These conditions would significantly affect their structural dynamic response characteristics due to the magnitude of the applied load. This may therefore have some significant effects on the crack growth behaviour and the extent to which corrosion can be associated with damage to the support structures. However, the magnitude of the applied load might depend on turbine size, water depth, soil conditions and type of support structures. It is therefore essential to design wind turbine support structures against prescribed limit states to ensure economical and safe operation. This paper presents a review of corrosion fatigue in offshore structures as regards the effects of seawater, environment and mechanical loading. Existing literature which documents results from previous campaigns is presented, including works referring to oil and gas structures, highlighting the significant difference in the aspects of loading and use of modern fabrication processes, with a view to illustrating the requirements for an update to the existing corrosion fatigue database that will suit offshore wind structures' design requirements.</p>