People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farukh, Farukh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Self-Reinforced Composite Materials: Frictional Analysis and Its Implications for Prosthetic Socket Designcitations
- 2024Shape Analysis of Prosthetic Socket Rectification Procedure for Transtibial Amputeescitations
- 2023Strength Assessment of PET Composite Prosthetic Socketscitations
- 2020Out-of-plane compressive response of additively manufactured cross-ply compositescitations
- 2017Low cycle fatigue of a directionally solidified nickel-based superalloy: Testing, characterisation and modellingcitations
- 2017Notches in fibrous materials: micro-mechanisms of deformation and damagecitations
- 2017Computational Modelling of Full Interaction between Crystal Plasticity and Oxygen Diffusion at a Crack Tipcitations
- 2015A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazingcitations
- 2015Deformation and Damage of Thermally Bonded Nonwoven Networkscitations
- 2015Fatigue crack growth in a Nickel-based superalloy at elevated temperature : experimental studies, viscoplasticity modelling and XFEM predictionscitations
- 2015Fatigue crack growth in a nickel-based superalloy at elevated temperature - experimental studies, viscoplasticity modelling and XFEM predictions
Places of action
Organizations | Location | People |
---|
article
Notches in fibrous materials: micro-mechanisms of deformation and damage
Abstract
Open Access article ; Fibrous networks are ubiquitous structures for many natural materials, such as bones and bacterial cellulose, and artificial ones (e.g. polymer-based nonwovens). Mechanical behaviour of these networks are of interest to researchers since it deviates significantly from that of traditional materials treated usually within the framework of continuum mechanics. The main reason for this difference is a discontinuous character of networks with randomly distributed fibres (that can be also curved) resulting in complex scenarios of fibre-to-fibre interactions in the process of their deformation. This also affects a character of load transfer, characterised by spatial non-uniformity and localisation. A discontinuous nature of fibrous networks results in their non-trivial failure character and, more specifically, evolution of failure caused by notches. In order to investigate these mechanisms, various notches are introduced both into real-life specimens used in experimentation and discontinuous finite-element (FE) models specially developed (Farukh et al., 2014a; Hou et al., 2009, 2011a; Sabuncuoglu et al, 2013) to mimic the microstructure of fibrous networks. The specimens were tested under tensile loading in one of the principal directions, with FE-based simulations emulating this regime. The effect of notch shape on damage mechanisms, effective material toughness and damage patterns was investigated using the obtained experimental and numerical methods. The developed discontinuous model with direct introduction of microstructural features of fibrous networks allowed assessment of strain distribution over selected paths in them in order to obtain strain profiles in the vicinity of notch tips. Additionally, evolution of damage calculated in advanced numerical simulations demonstrated a good agreement with images from experiments.