People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fages, Jacques
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2023Foaming of PLA biocomposites by supercritical CO2 assisted extrusion process
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021PLA-based biocomposites foaming by supercritical CO2 assisted batch process
- 2021Blending and foaming thermoplastic starch with poly (lactic acid) by CO 2 ‐aided hot melt extrusioncitations
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2021Foaming of PLA-based Biocomposites by Supercritical CO2 Assisted Batch Process : Effect of Processing and Cellulose Fibres on Foam Microstructure
- 2017Modelling Nucleation and Cell Size During the Continuous Process of Extrusion Assisted by Supercritical CO 2
- 2016Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO 2 assisted extrusioncitations
- 2012Use of supercritical CO2-aided and conventional melt extrusion for enhancing the dissolution rate of an active pharmaceutical ingredientcitations
- 2011On-line rheological measurement of a binary mixture polymer/sc-CO2 in an extruder
- 2011New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxidecitations
- 2010Biosourced polymer foam production using a (SC CO2) -assisted extrusion process
- 2008A new supercritical co-injection process to coat microparticlescitations
- 2008Application of the Markov chain theory for modelling residence time distribution in a single screw extruder
- 2007Microencapsulation by a solvent-free supercritical fluid process : use of density, calorimetric, and size analysis to quantify and qualify the coatingcitations
- 2004A new test for cleaning efficiency assessment of cleaners for hard surfacescitations
- 2004Supercritical carbon dioxide : an efficient tool for the production of ultra-fine particles for the food and pharmaceutical industries
- 2002Extraction and precipitation particle coating using supercritical CO2citations
Places of action
Organizations | Location | People |
---|
article
New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide
Abstract
It is well known that supercritical carbon dioxide (sc-CO 2) is soluble in molten polymers and acts as a plasticizer. The dissolution of sc-CO 2 leads to a decrease in the viscosity of the liquid polymer, the melting point and the glass transition temperature. These properties have been used in several particle generation processes such as PGSS (particles from gas saturated solutions). It is therefore highly likely that extrusion processes would benefit from the use of sc-CO 2 since the rationale of the extrusion processes is to formulate, texture and shape molten polymers by forcing them through a die. Combining these two technologies, extrusion and supercritical fluids, could open up new applications in extrusion. The main advantage of introducing sc-CO 2 in the barrel of an extruder is its function as a plasticizer, which allows the processing of molecules which would otherwise be too fragile to withstand the mechanical stresses and the operating temperatures of a standard extrusion process. In addition, the dissolved CO 2 acts as a foaming agent during expansion through the die. It is therefore possible to control pore generation and growth by controlling the operating conditions. This review focuses on experimental work carried out using continuous extrusion. A continuous process is more economically favourable than batch foaming processes because it is easier to control, has a higher throughput and is very versatile in the properties and shapes of the products obtained. The coupling of extrusion and supercritical CO 2 technologies has already broadened the range of application of extrusion processes. The first applications were developed for the agro-food industry twenty years ago. However, most thermoplastics could potentially be submitted to sc-CO 2-assisted extrusion, opening new challenging opportunities, particularly in the field of pharmaceutical applications. This coupled technology is however still very new and further developments of both experimental and modelling studies will be necessary to gain better theoretical understanding and technical expertise prior to industrial use, especially in the pharmaceutical field.